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Nonlinear dynamics of the magnetic electron drift mode turbulence is outlined and spontaneous generation of 

large-scale magnetic structures, so called meso-scale magnetic fields, in a non-uniform unmagnetized plasma is 

demonstrated. The stability of such large scale structures is investigated in kinetic and hydrodynamic regime for 

which an instability criterion similar to the Lighthill criterion for modulation instability is found. Furthermore these 

large scale flows can undergo further nonlinear evolution after initial linear growth, which can lead to the formation 

of long-lived coherent structures. 
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1. Introduction  
The excitation of magnetic fields is a current field of 

strong investigation in different areas. Since the end of the 

1970s, experiments have shown that strong quasi-steady 

magnetic fields are created in laser produced plasma. These 

magnetic fields oscillate with a typical frequency in 

between the ion and the electron plasma frequency, and are 

fed by density and temperature gradients through the first 

order baroclinic vector. Moreover, phenomena occurring in 

such time scales may even be more important as a source 

of the secondary magnetic field structures and are often 

encountered in space physics.   
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It is interesting to combine the phenomena of large-

scale structures spontaneously generated in a way similar 

to the established Reynolds stress in hydrodynamics� �1  

and strong magnetic fields and thus develop a nonlinear 

theory capable of describing the generation of such large-

scale magnetic fields by small-scale turbulence and their 

mutual interaction. Such a self-consistent spectral two-field 

(magnetic field, B , and temperature, T ) model has 

recently been developed � �2 . Note that this model does 

not deal with flows in the original sense, since it is not flow 

of the particles, but rather magnetic structures that are 

elongated along one direction and periodic with a long 

wavelength along the other direction as well. Following 

this similarity, we call the corresponding large-scale 

structures “zonal magnetic fields (ZF), or magnetic 

streamers as it has been adopted in the literature.   

With this nonlinear spectral model, we focus in the 

present paper on the detailed generation mechanism of 

large scale magnetic fields. The nonlinear evolution of 

such magnetic structures is also investigated. 

2. Basic equations 
Starting from the momentum equation together with 

Maxwell’s equations and the energy equation, the model 

equations for magnetic electron drift mode turbulence can 

be derived and read � �3  

 

� � � �4
, /t yB B T e B B� � �� � � � � � � m    (1a) 

 

 � �2
,t yT B e B T� �� � � � � m  (1b)     

 

Here � and � are inverse length scales of the density 

and temperature inhomogeneities and pec� �� is the 

electron skin depth, the curly brackets on the right-hand 

side denote the Poisson brackets and are defined as 

� � � �d,c d c� � �� � z . Linear analysis of Eqs.(1) shows 

that there is purely growing solutions for 0�� � , so that 

the underlying magnetic electron drift mode turbulence is 

driven by gradients of temperature and density. As already 

mentioned, this microturbulence can spontaneously 

generate large scale flows. During this flow generation, 

thermodynamic free energy stored in gradients is converted 

into kinetic energy of magnetic flows by fluctuation-

induced Reynolds stress and thus these gradients constitute 

the energy source for the magnetic structures.  

Our approach uses the ansatz of multiple-scale 

expansion between the spatio-temporal scales of the flows 

and those of the microturbulence. The temperature and the 

magnetic field are then decomposed into a large-scale, 

slowly varying component (denoted with a bar) and a 

small-scale component, T T� � and B B� � respectively. 

Eqs.(1) has a conserved quantity corresponding to the 

energy integral. It is important to note that the conserved 

total energy contains both small-and large-scale 
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components. This means that the whole wave spectrum and 

the interaction between different regions of the spectrum 

have to be included in subsequent considerations.  

To describe the interaction between small- and large-

scale structures within the turbulence we will separate the 

whole turbulent spectrum into two parts, one describing 

large-scale structures with a wave vector denoted by q and

the other describing small-scale turbulence with a wave 

vector denoted by k . We therefore have the relation 

��q k . Note that the both q and describe the same 

spectrum but different parts of it. Using these 

decompositions yields the qth Fourier components of (1)  

k

� � � �2 2 4 2 2
/ 1 / 1t q y qB i q T q e m q� � �� � � � � � �

� � � � k q k
k

B B
�

� � �� k q z k q

�

2
/ 2t q y qT i q B e m� �� � � � �

� � � �k q k q k k
k

T B T B
� �

� � �� k q z (2)

It is seen that a small scale turbulence can indeed drive 

large-scale structures characterized by and via the 

magnetic Reynolds stress 

qB qT

x y k
k k B� k

B
�

. In order to 

describe the nonlinear evolution of the total wave 

spectrum in a self-consistent way, we have to determine 

the “loop-back”, i.e. the response of small scales to large-

scale structures changes. In order to do so, it is 

appropriate to consider the evolution of this micro-

turbulence in a medium which is slowly modulated by 

large scale structures. This can be conveniently done 

using a wave kinetic equation for the wave action density 

in space. An appropriate action-like 

invariant takes the form 

� �,kN tr �r k

� � 22 2
4 1 /kBkN k� � �� � .

Then the corresponding wave kinetic equation can be 

written as 

� � � �NL NL

t k kN N� �� � � � � � � � �r kk r N �

, where� �2 k N St N� � � �,kN N t� r   (3) 

The terms on the RHS account for wave damping due to 

linear and nonlinear mechanisms, as well as local wave 

interactions. The linear frequency k� is modified in the 

presence of large scale fields. The reason is the Doppler 

shift induced by the large scale “flow velocity”
( )q
fv ,

where superscript (q) means that only the large scale 

spectral component of magnetic field and temperature 

have to be considered. Therefore the nonlinear frequency 

NL

k k� �� � � has been introduced. Explicitly
( )q
f� � �k v

� �2 ,  where
( )q
fv

kN�

is determined by the large scale spectral 

component of the magnetic field and temperature. We 

decompose the wave spectrum Nk into equilibrium and 

perturbed part, .Then, equations for N0

and can be obtained in the spirit of quasi-linear 

theory. Namely, assuming that N0 evolves in time only 

and with a much larger time scale than the perturbed part, 

we average Eq.(3) over the fast small spatial scales. This 

yields the equation for N0. The equation for a perturbed 

part can then be found by subtracting equation for N0

from Eq.(3) and assuming that the damping of the wave 

spectrum enters via the linear damping rate, 

0kN N N� � � k

N� .The 

result can be written as 

� �� � 0q Nk k
g f k

N N�� �
�

�N N
t

� �
� � �

�
v k v

r r k
� �� �
� �

 where gv is the group velocity of the magnetic electron 

drift mode. Introducing , where � �t iprexpkN i� � ��

� and p is the temporal and spatial scales of 

perturbations, and solving resulting algebraic Eq. yields 

� �� � � �0 ,
q

k f
NN R� �

� �
� �

k v
r k

� p

� �

�             (3a) 

Here the response function � �,
N

gpv iR p i �� � � � �
where

N� is small and positive. Equations (2) and (3) 

constitute the basic system used to describe the nonlinear 

evolution of the total wave spectrum of the magnetic 

electron drift mode turbulence in a self-consistent way� �2 .

3. Excitation of large scale fields 
       It was stressed out above that large scale magnetic 

fields can be generated by small scale turbulence via 

magnetic Reynolds stress. It is indeed only a necessary 

condition for the generation and does not permit us to 

determine neither a sufficient condition for the excitation 

nor the increment. The aim of this section is to point out 

these conditions by investigating different regimes of 

large scale field generation� �4,5 .

        In our first approach we are looking for a general 

criterion for the generation of large scale fields depending 

on the form of the wave spectrum. We will focus our 

attention on the zonal magnetic fields, i.e. structures 

elongated perpendicular to the direction of plasma 

inhomogeneity. Introducing the large scale

“vector” � � � � �2 1
/ 4 expq qB e m B T i� �� �� � qr� and
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taking the difference of equations (2) yields the equation 

of motion for B

�2
2 6 2 2 2 2 2

/ 4 1t k x yB e q B k k d m q �� �� � �� k (4)  

To solve this equation, we first replace the magnetic field 

Fourier component in the integral with the wave spectrum 

using the definition of the wave action density . Then 

we decompose into an equilibrium and perturbed part 

and use (3a). We find that the problem becomes similar to 

that describing the instability of gas of plasmons due to 

coupling with ion-acoustic waves�

kN

kN

�6

kN�
.  So, the evolution 

of the perturbed wave spectrum can be seen as a 

modulation of the amplitude by large scale fields. Thus p

is of order of q used previously to describe the large scale 

fields, and the real part of �  can be treated as the 

frequency of zonal field, . Assuming now 
zf�

zf zft i �� � � �� � , where 
zf� is the increment of 

zonal field generation, yields  that the  equation of motion 

for B  (4) finally becomes 

� � � �2 2 2

0
,

zf zf

q x x x ki K q k N k M R p d� � � � � � � �� k

here �2 2 2 2
/ 1k yM k k �� �� � , coefficient qK is real. The 

strongest interaction between the small scale turbulence 

(medium) presented by its wave spectrum , and the 

zonal fields can expected when the reaction of the 

medium ( in the response function) is in resonance with 

the perturbation (represented by 

0
N

�

gv in the response 

function), that is, when gpv� and thus �

� �, 1 0
NR p �� �� . Because of strong interaction, we 

can assume . The corresponding regime of zonal 

field generation is called “kinetic” because of its obvious 

similarities with Landau damping in the kinetic wave 

theory. The result of these considerations is the criterion 

for instability

0
zf

� �

� �
0

0 0
zf

x xk N k� � � � � �       (5)

This result is the opposite of the condition for the 

Langmuir turbulence� �6 , where the slope of the velocity 

distribution function must be positive for positive 

velocities.

      If the ZF amplitude grows due to the above instability, 

the non-resonant response becomes important as well. We 

investigate the nonresonant part assuming 
zf�

g� �� pv

� �
and . In this limit the response function

is

0
zf� �

,

� � � � 12 2 2

0

zf

q x x x k gK q k N k M qv d
�

� � � � �� k

So, as for the resonant part, 

� �
0

0
zf

x xk N k 0� � � � � �    (6) 

We derive rather general criterion for excitation of large 

scale magnetic fields by small scale turbulence, which 

depends on the equilibrium spectrum distribution. In 

order to have an exact result in the case of ZF, one has to 

integrate Eq.(4), or, which comes to the same after 

replacing the magnetic field Fourier amplitudes as before, 

integrate assuming t i� � � �� . It is worthwhile to note 

that in what follows, 
zf� � � and  This 

yields 

zfq q p� �

� � � �2 2 2

0
,q x x x ki K q k N k M R p d� � � � � � �� k

For explicit integration, one has to consider a specific 

form of the equilibrium wave spectrum . Assuming a 

monochromatic wave packet, 
0

, and 

performing the integration by parts yield the dispersion 

relation for ZF 

0
N

0 0
�� �kN N �k k �

� � � � � �2 2 2 2

0 0 0g q y g x yqv K q k N v k k ��� � � � �

We see directly from the last equation that requirement 

for the  instability is

� � � �0 0
0g x yN v k k ��� � �    (7) 

Note that the instability condition (7) is similar to the 

well known Lighthill criterion for the modulational 

instability. Explicit calculation of the derivative of the 

group velocity yields exact expression for the large scale 

zonal structure’s complex frequency` 

1 2

0 0g q yqv iK q k N�� � � �

� �5 2
2 2 2 2 2 2

0 0
1 2 1x yk k k� � �� � �

with the imaginary part being the rate of generation of 

large scale fields. Note that stabilization takes place for 

2 2 2 2

0 0
1 2 0x yk k� �� � � .

4. Long term dynamics of large scale fields 
      We have shown in the last section that large scale 

magnetic fields can be generated and strengthened 

through instabilities and therefore also subsist for a 

longer time scale. That is why we turn our attention to the 

long term dynamics. We will concentrate on ZF.  

      The long term dynamics can be determined by 

looking for the time evolution equation of the large scale 

“flow velocity”
� �

f

q
f�v v . To derive this equation, we 

will decompose the wave spectrum into equilibrium, 

g gi pv i qv� � �� �R p , since p q� , and thus
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2

k

resonant and nonresonant first order and nonresonant 

second order perturbed part, 

. Now performing 

calculations of resonant and non-resonant parts and 

summing up corresponding results yields the evolution 

equation for “flow velocity”

� � � �1

0

r

k k kN N N N N� � � �� � �

fv � �q
f� v

2 23 2

t x f x f x fv D v u v b� � � � � � � �

, ,D u b
x fv

0

   (8) 

Here and are some integral coefficients which 

depend on the equilibrium spectrum distribution. We now 

look for the stationary solutions of Eq.(8), propagating 

with constant velocity xu in the x direction, 

. Hence, after integrating Eq.(8) twice, one 

obtains 

� �
0f xv x u t�

� � � �2

0 x f f fu u v bv D v� � � �

C
x C� �

1yv v

  (9) 

where is the integration constant. We impose the 

boundary conditions corresponding to a solitary wave 

with different asymptotic values, i.e. a “switching” or 

“kink” soliton, which are as, 0yv�� � x � ��

and as
2
, 0y yv v v�� � x � �

� �xC u u� �

2v 1v

. The constant C  then 

takes the form and we can express 

 through ,

2

1
v bv�

�
0 1

�
2 1

v v� � �

�

oxu u b� .Then the simplest 

solution for Eq.(9) with these assumptions is given by 

�7

� � � �� �� �
1 2 1 2

2 tfv v v v v� � � �

�

1 2
anh 2b v v x D�

This solution describes the transient region between two 

different values of the flow to . We note that it is 

different from the stationary vortex solution found earlier 

1v 2v

�8 . The cooperative effects of the wave motion, 

steepening and instability give the possibility of forming 

stationary or moving kink solitons in between the 

surfaces of two different flow velocities. We would 

expect the effect of modifying the anomalous electron 

transport properties within as studied earlier. In a polar 

geometry, zonal fields are elongated along the 

� direction. They are known to inhibit anomalous 

transport in the radial direction by shearing small scale 

turbulence� �1

0

. However, the coherent structures found 

above travelling along the radial direction with the 

velocity xu , take trapped particles with them and hence 

can even attribute to radial electron transport. 

      The case of magnetic streamers is similar to the above 

case with one difference, which is the additional term in 

the streamer flow velocity evolution equation. 

5. Conclusions 
The properties of large scale fields, both zonal magnetic 

fields and magnetic streamers, have been investigated 

using a self-consistent model for magnetic electron drift 

wave turbulence. The small scale turbulence evolves in a 

medium of slowly changing variables, large scale fields, 

and is modulated by them. The kinetic and hydrodynamic 

instability of these modulations have been studied and in 

the hydrodynamic case, a criterion similar to the Lighthill 

criterion for the case of modulation instability has been 

found for zonal fields. Once it was shown that large scale 

fields can be unstable and be strengthened, their nonlinear 

long term evolution could be studied. We were able to 

stress out that both zonal magnetic fields and magnetic 

streamers admit the formation of stationary coherent 

structures in the transition layer between surfaces of 

different flow velocities, modifying the turbulent electron 

transport properties.  
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