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Semiclassical Formulation of Optimal Control Theory
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Abstract
In the present paper semiclassical formulation of optimal control theory is made by combining the conju-

gate gradient search method with new approximate semiclassical expressions for correlation function. Two
expressions for correlation function are derived. The simpler one requires calculations of coordinates and
momenta of classical trajectories only. The second one requires extra calculation of common semiclassical
quantities; as a result additional quantum effects can be taken into account. The efficiency of the method is
demonstrated by controlling nuclear wave packet motion in a two-dimensional model system.
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Controlling molecular processes by laser pulses is a
subject of active research in physics. One of the most
natural and flexible approaches in this area is the opti-
mal control theory (OCT) [1,2]. It is based on the idea
that the controlling laser pulse should maximize a cer-
tain functional so that the variational principle can be
used to design the pulse. The procedure leads to a set
of equations for optimal laser field, which includes two
Schrodinger equations to describe the dynamics start-
ing from the initial and target state wave packets. The
optimal laser field is given by the imaginary part of the
correlation function of these two wave packets. This
system of equations of optimal control must be solved
iteratively in general.

During the last 20 years a number of methods based
on this idea have been developed [3-9]. The earliest for-
mulations of the problem for classical [3-6] and quan-
tum [7] systems employ the well established numeri-
cal conjugate gradient search method to solve the sys-
tem of equations iteratively and maximize the certain
functional. Later the more effective numerical schemes
to solve this system of optimal control equations have
been introduced [8,9]. These iterative algorithms con-
verge faster than the gradient-type.

In all these approaches the optimal laser field is given
by the imaginary part of a certain correlation function.
In the simple case of quantum conjugate gradient search
method [7] this function has the form

Θ(t) = 〈φ(t)|µ(r)|χ(t)〉, (1)
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where |φ(t)〉 and |χ(t)〉 are the wave packets driven by
the optimal field starting from different initial states and
µ(r) is the dipole moment. To calculate the optimal field
two Schrodinger equations for |φ(t)〉 and |χ(t)〉 together
with the equation for correlation function (1) should be
solved iteratively in general; hence its numerical cost
becomes huge for multi-dimensional systems.

Since the quantum OCT is limited to low-dimen-
sional systems because of formidable numerical cost,
it is strongly desired to incorporate semiclassical ap-
proaches of wave packet propagation like the Herman-
Kluk method [10,11] into the OCT. Within the semi-
classical approach each wave packet is formed by sum-
mation of contributions from a large number of clas-
sical trajectories. In order to calculate the correlation
function the double summation with respect to this large
number of trajectories should be performed at each time
step. These cause significant numerical difficulties in
direct incorporation of semiclassical approaches into
the OCT.

In the present work semiclassical formulation of op-
timal control theory is made by combining conjugate
gradient search method with new approximate semi-
classical expressions for correlation function [12]. Ap-
proximate analytical evaluation of one of the sums
is performed by direct linearization of semiclassical
Herman-Kluk propagator. Two approximate semiclas-
sical expressions for correlation function, which con-
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Fig. 1 X-component (a) and Y-component (b) of correla-
tion function of initial state and target state wave
packets (Eq. (1)). Bold line: exact quantum result.
Dash line: semiclassical results. The initial state
is a ground state wave packet. The target state is
a same shape wave packet shifted for 0.7 a.u. in
O-H bond direction.

tain only one summation with respect to trajectories,
are obtained. These expressions do not contain the
Herman-Kluk prefactors and exponential factors, which
also simplify the calculations very much.

Semiclassical results obtained for correlation func-
tion are found to be in good agreement with the exact
quantum one for about 5 − 6 oscillations of real and
imaginary part of correlation function or for about 200
time integration steps (See Fig. 1). The accuracy of
our semiclassical results is deteriorated naturally at long
time durations. To improve the applicability of the ap-
proach it is good enough to recalculate the coefficients
used in our formula from time to time.

The efficiency of the method is demonstrated by
controlling nuclear wave packet motion in a two-
dimensional HOD model system. The following three
important processes are controlled: (i) shift of the
ground state wave packet, (ii) uniform acceleration of
the ground state wave packet and (iii) H + OD→ HO +
D reaction dynamics (See Fig. 2). High final absolute
values of the overlap of target state wave packets and fi-
nal wave packets are achieved: about 90− 95 % for first
two processes and 75 − 80 % for the last one.

The computational time of quantum wave packet

Fig. 2 X-component (a) and Y-component (b) of the op-
timal field obtained for model H + OD → HO + D
reaction. Solid line: exact quantum result. Dash
line: semiclassical results.

propagation grows exponentially with dimensionality,
so it becomes huge for multi-dimensional systems. On
the other hand, the semiclassical approaches make it
possible to reproduce almost all quantum effects with
its computational cost not growing rapidly as the di-
mensionality of the system increases (about as square
of dimensionality). This means that the present semi-
classical theory is expected to be much more efficient
than the quantum in the case of higher dimensions.
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