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Abstract

It is analytically proved that the magnetic flux within a flux tube, the generalized vorticity flux within a vortex
flux tube, the magnetic helicity, and the self-helicity are not conserved in the ideally conducting, fully ionized plasma
confined by perfectly conducting walls. Self-organization theories based on helicities is clarified to lose their theoreti-
cal and physical basis. Numerical demonstrations are presented to show the usefulness of a generalized theory of self-
organization based on minimizing the rate of change of global auto-correlations for multiple dynamical field quantities.
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Ever since J. B. Taylor published his theory [1] with a
model to derive the Taylor state ∇ × B = λB and to explain
the reversed field pinch configuration [2], magnetic helicity
has been believed to play an important role as a global invari-
ant in the process of self-organization and relaxation for
magnetized plasmas. However, the Taylor state had been pre-
viously derived by another theory [3] with a completely dif-
ferent physical model to find the minimum dissipative state
of magnetic energy. This theory using uniform resistivity is
shown to be included in the general self-organization theories
[4,5,6] to find decaying self-similar states with niminum
change rate of global auto-correlations for multiple physical
quantities. The general theories further lead to wider relaxed
states such as the non-Taylor states with non-uniform resis-
tivity, as was shown by simulations that agree with analytical
results in [7]. Those facts indicate that the introduction of
magnetic helicity itself is not physically required in the relax-
ation process. The general theories can lead to correct decay-
ing self-similar states for other dynamical systems, as was
analytically and numerically demonstrated for dissipative
solitons described by a viscid Korteweg-de Vries equation
[8] and a two-dimensional (2-D) incompressible viscous fluid
in a friction-free box [9]. Several authors [10-12] introduced
a two-fluid plasma model, having the same theoretical struc-
ture with Taylor’s theory. Note that Taylor’s theory and new

1. Introduction ones are never based on either a variational principle (e.g., as
in classical mechanics [13]) or an energy principle (e.g., to
describe perturbations in an ideal magnetohydrodynamic
(MHD) plasma [14]), either of which leads to dynamical
equations for the time evolution of the system of interest.

In this paper, we present analytical proofs in Section II
which clarify self-organization theories based on helicities
lose their theoretical and physical basis. In Section III we
present breafly a novel general theory of self-organization [6]
and show three applications of the general theory.

2. Non-invariance of magnetic fluxes, vor-

ticity fluxes, and helicities in ideal plas-

mas

Physically and theoretically inevitable processes to
guarantee usefulness of self-organization theories based on
topological quantities [1,10-12] are to definitely clear follow-
ing two issues: 1) Reality of the implicit assumption that both
lines of the magnetic field and the generalized vortex are
frozen in ideally conducting, fully ionized plasmas. 2)
Rigorous invariance of both the magnetic helicity K ≡ ∫Vp A ·
B dV [1] and the self-helicity Kα ≡ ∫Vp Pα · Ω dV [11] in those
plasmas confined by perfectly conducting walls, where Pα ≡
mα uα + qα A is the canonical momentum and Ωα ≡ ∇ × Pα is
the generalized vorticity.
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We start with Taylor’s theory. The generalized Ohm’s
law of (me mi/Ze2ρm)(∂ j / ∂ t) = E + u × B − η j − (mi −
Zme/Ze2ρm) j × B + (1/Zeρm) (mi∇pe − Zme∇pi)  for a fully
ionized MHD plasma is known to express correctly experi-
mental plasmas better than the simplified Ohm’s law of η j =
E + u × B. Applying Faraday’s law and the generalized
Ohm’s law with η = 0, we obtain the time derivative of the
magnetic flux Φ linking any closed contour C fixed and mov-
ing with the ideal plasmas and that of K, respectively, as

Next, we deal with the theories in [10-12]. Using the equa-
tions of motion for the two fluid model [10-12], and without
using any Ohm’s law (e.g., two Ohm’s lows shown above),
we straightforwardly get the time derivative of the vorticity
flux Φg linking any closed contour C fixed and moving with
local velocities uα of the ideal fluid α (=e or i for electrons
or ions, respectively) without friction force and that of Kα,
respectively, as

We find from Eqs. (1) and (3) that even if any magnetic and
any vortex flux tubes can be defined at each instance due to
∇ · B = 0 and ∇ · Ωα = 0, their identities cannot be main-
tained in the ideal plasmas with changeful flow due to terms
of Hall effect, pressure gradients and others. These results
exactly indicate that the topological feature of field and vor-
tex lines is always changing even in the ideally conducting
plasmas during relaxation process. Directly connecting with

these facts, Eqs. (2) and (4) clearly show that K and Kα can-
not be invariant even in the ideally conducting, fully ionized
plasmas.

Since we have analytically proved that the two issues of
1) and 2) pointed above cannot be cleared, we can conclude
that the theories in [1,10-12] are not theoretically available
for real experimental and space plasmas due to their physi-
cally incorrect basis. Note, moreover, that those theories sim-
ply use variational calculus—not a variational principle or an
energy principle—to find solutions with minimum energy
from a set of solutions with the same helicity. We should
remind that the value of a topological quantity can be calcu-
lated after the configuration of the magnetic field or vortex
lines is determined, but the value itself cannot inversely
determine the configuration, which is passively formed not
by topological restrictions but through physical process itself.
We comment that helicity injection experiments do not drive
plasma current; this is always driven by energy injection
because of external supply for decayed magnetic energy
(e.g., externally applied DC voltage, radiofrequency waves,
neutral beam injection, plasmoid injection, etc.).

Since, according to the discussion with the proofs shown
above, the theories based on helicities are not physically
available for experimental and space plasmas, a different the-
ory for self-organization is needed, which is applicable to
general dissipative dynamical systems.

3. A general theory of self-organization and

application

After we present briefly a general theory extended from
[6] and originated from [4,5] for how to find self-organized
states in arbitrary dissipative nonlinear dynamical systems,
we will show three applications of the general theory, in
order to demonstrate predictions by the theory to be correct.
Consider a set of N dynamical variables q ≡ q [ξ k] ≡
(q1[ξ k],…,qN[ξ k]), with M-dimensional independent variables
[ξ k](k = 1, 2,…,M). Using generalized symbolic dynamical
operators, we may write the general nonlinear set of N simul-
taneous equations for an open or a closed dynamical system
as

where Di
j[q] (i = 1, 2,…,N) represents dynamical operators

which include both nonlinear and dissipative terms for the
change of a dynamical variable qi. Here, the dynamical sys-
tem of interest always has fluctuations of the dynamical vari-
ables qi[ξ k] along the axis of the variable ξ j, one of which is
expressed as τci giving the ordering of the relaxation time
scale. Since the self-organized states must have the most
unchangeable configurations along ξ j during the evolution of
the dynamical system, we are able to judge and identify the
self-organized states as those states for which the rate of
change of global auto-correlations for multiple dynamical
field quantities is minimized, that are exactly written by
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Expanding Eq. (6), and using Eq. (5), we obtain two equa-
tions to judge and identify the self-organized states, as shown
in [4,5]. Using the variational calculus for the two equations,
we obtain the Euler-Lagrange equations and the solutions of
the decaying self-similar, self-organized state with the slow-
est decay within the time scale τci, denoted by a superscript #,
as follows;

where Ui1[ξ k
k
≠j] is the lowest eigensolutions with the smallest

eigenvalue Λi1 for the given boundary conditions.
At first, we apply this general theory to the following

Korteweg-deVries equation with a viscosity ν term with peri-
odic boundary conditions

Using Eq. (8), we obtain the analytical solution for the self-
organizied state, which has the minimum rate of change and
appears after interchange between nonlinear and dissipative
terms:

This analytical solution agrees very well with simulations
reported elsewhere [8].

Next, we apply the general theory to a 2-D incompress-
ible viscous fluid equation with periodic boundary conditions
in the x, y plane (normalized to unit length) in the following
vorticity ω form with ω (x, y) = ∇ × u;

Similarly to the first application shown above, we obtain the
analytical solution for the self-similar, slowest decay phase
with smallest eigenvalue Λ1 as

Here, the kinematic viscosity v is the reciprocal of the
Reynolds number   in dimensionless units for unit length and
unit initial rms velocity, i.e., v = R-1, and the eigenvalue Λ1 =
4π 2 / R of the lowest mode {(1, 0) + (0, 1)} is used. Equation
(11) is numerically solved with the use of two relations u = ∇
ψ × k and ∇2ψ = −ω, where the stream function ψ = ψ (x, y,
t) and other field variables are independent of z. When we
combine ∇2ψ = −ω with the lowest eigenmode solutions for
of Eq. (12), we can derive the relation between ω and ψ of
the self-similar, self-organized state as follows;

We numerically solved Eq. (11) by the Kernel Optimum
Nearly-analytical Discretization algorithm with high numeri-
cal accuracy [16], with the use of the Jacobi scheme to solve
∇2ψ = −ω. We also numerically calculated the correlation
coefficient C( f, g) between the analytical solution and simu-
lation data, where C( f, g) is defined for two functions f and
as g C( f, g) = {( f − f

−
)(g − g−)} / {(( f − f

−
)2 · (g − g−)2)1/2} . In

order to find the self-organized state with minimum rate of
change of the global autocorrelations, simulations must be
performed with rather long effective computation times, i. e.,
more than ten times longer than the simulation time indicated
in Ref. [15]. Figure 1 shows the time evolution of the spectral
components of vorticity. Horizontal scale shows the square
of spectral eigenvalues Λk = π2 (l k

2 + m k
2) for eigenmodes 

(l k, m k). Vertical scale is normalized by the maximum
absolute value of either the positive or the negative spectral
components Cwk in each figure, where the positive spectra are
shown by bold bars, and the negative ones by shaded ones
attached to the right hand side of the bold bars. Even though
the initial flow at t = 0 does not contain the lowest eigen-
modes of {(1, 0) + (0, 1) }, the time evolution of spectra clar-
ifies the greater dissipation of the higher spectral components
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Fig. 1 Time evolution of spectral componets of vorticity dur-
ing self-organization for the simulation data with R =
14,000.

a) t = 0 b) t = 1

c) t = 5 d) t = 38

e) t = 100 f) t = 500
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and the rapid spectrum accumulation at the lowest eigen-
modes, where the amplitude of (1,0) mode is equal to that of
(0,1) mode at t = 500. Figure 2 shows the time evolution of
the correlation coefficient of the simulation data with the
relation ω = 4π 2ψ and with ω = csinh (βψ) which is not the
self-similar solution of Eq. (11) but only a solution of (u · ∇)
ω = 0 derived by the maximum entropy theory in Ref. [15].
The bold line is the coefficient for ω = 4π 2ψ, and the chain-
dotted line is for ω = csinh (βψ). It is seen from this figure
that the value of the correlation coefficient for ω = 4π 2ψ
almost completely becomes 1.0 after around t =280, but that
for ω = csinh (βψ) can never become 1.0, as was analitically
predicted by the present general theory. From the spectral
analysis for the simulation data such as Fig. 1, we can find a
sufficient physical picture of self-organization, i.e., a) simul-
taneous normal and inverse cascading by the nonlinear term,
b) the faster spectral decay of higher eigenmodes to result in
the rapid spectral accumulation to the lowest eigenmode by
the dissipative term. Details about these simulations will be
reported elsewhere.

Finally, we apply the general theory to a fully ionized,
compressible, resistive, viscid MHD fusion plasma expressed
by three nonlinear power balance equations for kinetic flow
energy, magnetic field energy, and internal thermal energy.
Using Eq. (7), we obtain the following three Euler-Lagrange
equations as the set of dynamical equations including time
derivative terms:

Equations (14), (15), and (16) indicate that the relaxed states
gradually change and eventually become unstable due to the
time derivative terms, and the relaxation process repeats
itself. This is consistent with observations from fusion plas-
mas and with simulation results. From Eq. (15), we obtain ∇
× ∇ × B = (µ0 η)λBB which include the Taylor state ∇ × B =

λB in the limiting case of uniform resistivity, u = 0, and
quasi-steady zero-pressure plasma. The relaxed states by this
limiting case are the same with the states with minimum dis-
sipation of magnetic energy derived in [3].

4. Summary

In Section I, showing both the physical model of the the-
ory in [3] and that of the theories in [4,5,6], we clarified that
the introduction of the magnetic helicity itself is not physical-
ly required to derive the Taylor state in the relaxation
process.

We analytically proved in Section II that even in the ide-
ally conducting, fully ionized plasmas with changeful flow,
the identities of the magnetic and the general vortex lines
cannot be maintained, and both the magnetic and the self
helicities used in [1,10-12] cannot be invariant [ cf. Eqs. (1),
(3), (2) and (4)]. From these analytical results, we conclude
that the theories in [1,10-12] are not theoretically available
for real experimental and space plasmas due to their physi-
cally incorrect basis.

In Section III, we presented briefly a new general theory
of self-organization and three typical applications with simu-
lation data in order to demonstrate correct predictions by the
new theory. The Taylor state was shown to be analytically
included in the third application. We also presented a suffi-
cient physical picture of self-organization from the spectral
analysis for simulation data. The most remarkable feature of
the general theory is that it can be applicable not only to
magnetized plasmas but also to any dissipative nonlinear
dynamical systems, written by Eq. (5), giving suitable self-
organized states as the Euler-Lagrange equations.
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