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Abstract

The particle diffusion in a stochastic magnetic field is studied by applying the functional integral method to a
kinetic equation. It is found within the framework of the Direct Interaction Approximation (DIA) that the cross-field
diffusion coefficients can be obtained by solving nonlinear ordinary differential equations. An extended DIA for the
diffusion coefficient is also presented by incorporating the effect of particle trajectories.
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The particle transport due to a stochastic magnetic field
has been intensively studied in the context of thermonuclear
fusion research. A kinetic equation in a presence of stochastic
magnetic field is the reasonable starting point for the theoret-
ical treatment of this problem. However, solving such a sto-
chastic kinetic equation is extremely difficult, and thus many
different approaches and approximations are presented for
this difficult problem.

Balescu et al. [1-3] have presented an interesting analyt-
ically tractable model describing the particle transport in a
fluctuating magnetic field. In this model, the fluctuating com-
ponents of the magnetic field are assumed to be Gaussian
random process, and the mutual collisions between particles
are modeled by the random variation of velocity. Even
though the problem is quite simplified by using this model,
the rigorous mathematical treatment is still impossible except
for the limited case. In this paper, we proceed to investigate
this particle-diffusion model further. In Sec. 2, the particle-
diffusion coefficient is studied within the framework of the
Direct Interaction Approximation (DIA) by using the func-
tional integral method [4-6]. We extend the previous theory
[3] to the form applicable to fast particles and also extend to
a finite shear configuration. In Sec. 3, we incorporate the idea
of the decorrelation trajectory method proposed by Vlad et
al. [7] into our functional integral formulation, and present
the extended DIA by taking into account the effect of particle
trajectories.

2. Diffusion coefficient by DIA

In this section, we study the particle transport in a sto-

1. Introduction chastic magnetic field within the framework of the DIA. Let
us consider a magnetic field given by

where {ex, ey, ez} are the unit vectors in the Cartesian coordi-
nates (x, y, z), B0ez is the constant averaged magnetic field,
and B0[bx(r)ex + by(r)ey] ≡ B0b is the fluctuating magnetic
field with the random variables bx(r) and by(r) of Gaussian
process. We start with a kinetic equation for a distribution
function

where ∇⊥ = ex∂/∂x + ey∂/∂y; the distribution function ƒ is nor-
malized as ∫ƒ(r, t)dr = 1; and the subscripts || and ⊥ refer to
the parallel and perpendicular to the averaged magnetic field.
In (2) we have introduced a formal ordering parameter ε,
which physically means ε = O(b2l ||

2/l⊥
2), where l|| and l⊥ are the

characteristic parallel and perpendicular lengths. The formal
parameter ε is finally set to be unity. The effect of Coulomb
collisions is modeled by using the Gaussian random variation
ηη(t) of velocity as [1-3]

The Gaussian random variables b(r), η||(t) and ηη⊥(t) are
assumed to be no correlation among them, and the magnetic
fluctuation and the collisional variation have the following
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B(r) = B0 [ez + bx(r)ex + by(r)ey], (1)

  t f + v||  z f + v||b . ∇⊥ f − C(f) = 0, (2)ε∂ ∂

C(f) = − ||(t)   z f

−       [ ⊥(t) + ||(t)b(r) ] . ∇⊥ f. (3)

ε η

ε ε ηηη

∂
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statistical properties:

with R[ν(t − t' )] = exp (−ν |t − t' |) and

where r⊥ = xex + yey; I = exex + eyey; X|| = v T
2/2ν and X⊥ = vT

2ν
/2Ω2 are the classical parallel and perpendicular diffusion
coefficients; vT and Ω are the thermal velocity and the
Larmor frequency ; ν is the collision frequency; λ|| and λ⊥ are
the parallel and perpendicular correlation lengths; β repre-
sents the amplitude of fluctuating magnetic field; and 〈 · 〉
denotes the ensemble average over the random variables 
b(r), η||(t) and ηη⊥(t). For later use, we define

Let us introduce a generating functional with the exter-
nal sources ζ(t) and ξ(t)

with S = −log〈e-L/ε〉 − ƒ'(1)ζ(1) − ƒ̂(1)ξ(1) and

where the index 1 denotes 1 = (r, t) ; ∫D[ƒ' ]D[ƒ̂] means the
functional integral; N is the multiplicative constant irrelevant
to the following calculation; and the integration over repeated
indices is assumed in the case of no confusion. Using this
generating functional, we define

In the limit of ζ = ξ = 0, the one-point function g(1) becomes
the ensemble-averaged distribution function, i.e. g(1)|ζ=ξ=0 =
〈ƒ(1)〉. Performing the ensemble average in S and using the
identity

we can derive the evolution equation for g(1). This evolution
equation is considered up to the order ε by applying the
Wentzel-Kramers-Brillouin (WKB) approximation. Let us
now define the cross-field diffusion tensor by

Then, the anomalous diffusion tensor due to the magnetic
fluctuation is expressed in terms of the response function G
as

Taking the functional differentiation of the evolution func-
tion for g(1) with respect to ζ(1' ), neglecting the three point
function δG(1 − 2)/δξ(1' ), and using the spatial and temporal
Markovian approximation give us the equation for the
response function up to the order ε

where D|| = X||ϕ [ν(t − t' )] and D ⊥
cl = X⊥ϕ[ν(t − t' )] are the

classical parallel and perpendicular diffusion coefficients,
respectively. The approximation leading to the evolution
equation for g and the equation (15) for G is referred to as the
DIA in this paper.

The Fourier transform of the solution to (15) is immedi-
ately obtained

where H is the Heaviside step function. Substituting (16) into
(14), we find that D ⊥

an is a diagonal tensor, i.e. D ⊥
an = D ⊥

an I,
and the function µ defined through D ⊥

an(t) = (λ⊥
2/4)dµ/dt satis-

fies the equation

(13)
2
1

dt
d drr⊥r⊥g(r,t).D⊥(t) = ∫

dt2{ (t − t2)] + v2
||}X||R[ν

ν

ν

ν ν

νν

ν

ν

ν

×{R[ (t − t2)]R[ (t3 − t4)]

+ R[ (t2 − t4)]}(t − t3)]R[

+ R[ (t2 − t3)]}

− v|| X||

×G(r2, t − t2) z3
G(r3, t2 − t3)

(t) =D ⊥ ∫0

t

dt2∫0

t
dt3{R[ (t − t2)]∫0

t2

× dr2∫ dr3F(r2 + r3)∫

∫0

t

∫0

t2

an

drF(r)G(r, t −t2)×∫

dr2 dr3× ∫ ∫ dr4F(r2 + r3 + r4)∫

( X||)
2 dt2 dt3∫0

t3 dt4+

∂

×G(r2, t − t2) z3
G(r3, t2 − t3).∂

× z4
G(r4, t3 − t4)∂

(14)

〈   ||(t)   ||(t')〉 = X|| R[ (t − t')], (4)η ν νη

〈   ⊥(t)   ⊥(t')〉 = X⊥ (5)ηη η R[ (t − t')] I,ν ν

〈b(r)b(r')〉 = 〈∇A(r) × ez∇'A(r') × ez〉
≡ F(r − r') (6)

〈A(r)A(0)〉 =   2  2 expβ − (7)
⎡

⎣
⎢

⎤

⎦
⎥

z2

2  2
||

− ,r2

2  2
⊥

⊥
⊥λ

λ λ

(8)ϕ ϕψ (  ) =  ),T  (  ( ) =TTTd R(
T

∫0

¯ ¯  ).TTd
T

∫0

¯ ¯

[ t + v||   z − D||(t − t' ) z
2] G(1 − 1' )

−D⊥(t − t' )∇⊥G(1 − 1' )

−∇⊥ ·

cl 2

∂ ∂ ∂

D ⊥ (t − t' ) · ∇⊥G(1 − 1' ) =   (1 − 1' ),δan (15)

G(k, t − t' ) = H(t − t' ) exp [−ik||v||(t − t' )

−k2
||            D||(t'' )dt'' − k2

⊥∫0

t − t'

∫0

t − t'

D⊥(t'' )dt''cl

− k⊥k⊥ :             (t'' )dt''],∫0

t − t'

D ⊥
an (16)

(9)ζ ξZ[  ,  ] = ∫ [ '] eef [   ]f̂ −S/ ε W/ ε≡N D D

(11)ε εg(1) ≡              , G(1 − 1') ≡Wδ
(1)δζ

2Wδ
(1')δξ (1)δζ

2                   .

(12)∫ [   ]D D 0,f' [   ]f̂
f̂

−S/ ε =δ
(1)δ

e

(10)

t z∂∂ η⎧
⎨
⎩

L f̂ (1)  = +[v|| + ε ||(t)]
η+      [(v|| +ε ε ||(t))b(r)

ηη ⎧
⎨
⎩
f' (1),+   ⊥(t)] · ∇⊥  
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with the initial conditions µ(0) = 0 and dµ(0)/dT, where T =
νt, α = βλ||/λ⊥, v−|| = v||/vT, X−|| = 2X||/νλ||

2 , X−⊥ = 2X⊥/νλ⊥
2 , and

In the λ⊥ = ∞ limit, which is equivalent to neglecting the
dependence of the fluctuating magnetic field on x and y, the
differential equation (17) reduces to the exact one derived
without using the DIA.

In the large v|| limit, the differential equation (17) is
approximated as

The explicit calculation for various parameters shows that the
approximation by this equation is fairly well for v|| > vT in the
region of X−|| > 1 and X−⊥ < 1.

The starting point for the shearless configuration (1)
completely agrees with that of ref. [3] by setting v|| = 0 in (2).
Therefore, for comparison with the result in ref. [3], we set v||

= 0 in (17) and define µ̂ = µ − µ0, where µ0(T) = 4α2

(   1 + X−||ψ(T) − 1) is the exact solution when ηη⊥ = 0 and the
fluctuating magnetic field b depends only on the z coordinate.
The differential equation for this newly defined function µ̂
agrees with that obtained in ref. [3] when we neglect µ0 in F.
This neglect of µ0 is the additional approximation to the DIA
and this approximation is implicitly used in ref. [3].
However, it is found from the numerical calculation of (17)
that the neglect of µ0 in F is only valid in the quite limited
region of parameters within the framework of the DIA.

Finally in this section, the effect of finite shear is con-
sidered in a sheared slab configuration. Restricting our con-
sideration only around a surface x = 0, we write the magnetic
field as

where Ls is the shear length. In the approximation of x/Ls <<
1, the diffusion tensor D ⊥

an(t, x) and the equation for the
response function G (1, 1' ) ≡ G (r − r', t − t'; x/Ls) are
obtained from (14) and (15) by replacing ∂z with ∂z + (x/Ls)∂y.

We here note only the collisionless regime by assuming
η||(t) = 0 and ηη⊥(t) = 0 . The diffusion tensor in this regime is

also diagonal for the finite shear configuration, and the diag-
onal components of µµ(t, x) = (4/λ⊥

2) ∫ 0
t D ⊥

an (t', x)dt' are deter-
mined by the following equations:

where

The equations (21) and (22) reduce to (19) when Ls = ∞.

3. Extended DIA

In this section, we incorporate the idea of the subensem-
ble in ref. [7] into our functional integral formulation. Let us
now consider an ensemble average over the fluctuating mag-
netic field and the collisional variation under the conditions
b(r) = b0 and η||(t) = η||0, and write this subensemble average
by 〈 · 〉0. In analogy to (9), we introduce a generating func-
tional

with S0 = − log〈e-L/ε〉0 − ƒ'(1)ζ(1) − ƒ̂(1)ξ(1), and define the
subensemble-averaged response function by

Then, repeating the procedure leading to (14) and (15), we
can derive the subensemble expression for the anomalous dif-
fusion tensor

where P1(b0) and P2(η||0) are the Gaussian probabilities of b0

and η||0, and D0(t) is approximately obtained by replacing the
response function G(i − j) with G0(i − j) in the expression
(14). The equation for G0(1 − 1' ) is

where

(17)
⎡

⎣
⎢

⎤

⎦
⎥

1

2
× exp −

1 + X−|| (  )ψ T

X−||

X−||

+ 2= 2X−|| (  )α T
(  )T

d

µd2

T 2 1/2⎡
⎣1 + X−|| (  )ψ T ⎤

⎦

2F
R

⎧
⎨
⎩

4v−2
||− 1

2

⎡

⎣
⎢

X−|| (  )ϕ T

1 + X−|| (  )ψ T
T

v−2
||

v−2
||

2T

v−2
||

2T

⎤

⎦
⎥

⎧
⎨
⎩

+ 1 −ϕ
1 + X−|| (  )ψ T

(  )T
⎛
⎝
⎜

⎞
⎠
⎟

(21)
⎡

⎣
⎢

⎤

⎦
⎥

1

2
× exp − ,+ F

=
(1 − F )

dt2

µd2
xx 4α 2

v
2
||

λ2
|| (1 + xx /2)1/2µ (1 + yy /2)3/2µ

v
2
||t

2

λ2
||

⎛
⎝
⎜

⎞
⎠
⎟

(22)
⎡

⎣
⎢

⎤

⎦
⎥

1

2
× exp − ,+ F

=
1

dt2

µd2
yy 4α 2

v
2
||

λ2
|| (1 + xx/2)3/2µ (1 + yy/2)1/2µ

v
2
||t

2

λ2
||

⎛
⎝
⎜

⎞
⎠
⎟

(23)F = .
1 x2

L2
S1 + yy/2µ

v
2
||t

2

λ2
⊥

(24)Z0[ ,   ] = Nζ ξ ∫ D[ f ']D[ f̂ ] e−S0/ ≡ eW0/ε ε

(25)G0(1−1') ≡ .W0ε 2 δ 2

(1') (1)δζδξ

(26)D ⊥(t) = db0∫ d∫ η||0P1(b0)P2( η||0)D0(t),an

+ C||(t − t') + C⊥(t − t', r − r') . ∇'⊥

 + D||(t − t') + Dcl(t − t')∇' 2

+ ∇' . D0(t − t') . ∇' G0(1 − 1') = −   (1 − 1'), (27)

⎧
⎨
⎩

⎧
⎨
⎩

∂ ∂
t'∂ ∂

∂
∂

z'
2

z' 2 ⊥ ⊥ G0(1 − 1')

⊥ ⊥ δ

(18)1 + X−⊥
2

⎡

⎣
⎢ (  ) +

⎤

⎦
⎥

−2

ψ µ
F(  ) =T T .

(19)= −exp .
dt2

µd2 4α 2
v

2
|| ⎡

⎣
⎢

⎤

⎦
⎥λ2

||

v
2
||t

2

2λ2
||

1

(1 +    /2)2µ

(20)
Ls

B(r) = B0 ez + + B0b(r),ey

x⎛
⎝
⎜

⎞
⎠
⎟
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The equations dZ(T;t − t' )/dT = C||(T) and dX⊥ (T;r − r', t −
t')dT = C⊥(T, X⊥, Z) with X⊥(t − t';r − r', t − t' ) = r⊥ − r'⊥ and
Z(t − t';t − t' ) = z − z' determine the characteristic trajectory
to (27) in the approximation of neglecting the diffusion
terms. This characteristic trajectory is similar to the decorre-
lation trajectory proposed in ref. [7]. The expression (26) for
the diffusion tensor and the equation (27) for G0 reduce to
(14) and (15) obtained by the DIA when we neglect η||0 and
b0.

4. Conclusions

The particle diffusion in the fluctuating magnetic field is
investigated by applying the functional integral method to the
kinetic equation (2). It is found within the framework of the
DIA that the diffusion coefficient can be obtained by solving
the nonlinear ordinary differential equation (17) for the
shearless configuration (1). For the sheared configuration
(20), the diffusion coefficient in the collisionless regime is
shown to be obtained by solving the coupled equations (21)

and (22). In Sec. 3, we have formulated the extended DIA by
incorporating the effect of particle trajectories. In this formu-
lation, the transport coefficient can be calculated from the
expression (26) by solving the equation (27).
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C||(t − t') = v|| + X||R[ (t − t')] , (28)
〈   2(t)〉η

η

||

||0
νν

C⊥(t − t', r − r') = (29)b0
. F(r − r').

〈b2(r)〉

2C||(t − t')
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