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Abstract

The global plasma shift is calculated analytically for a helical system with an ideal wall. The derived expression
for the plasma shift, incorporating both the finite-β plasma expansion and the opposing reaction of the nearby ideal
wall, can be used for interpreting the observable high-β equilibrium effects in LHD and other helical devices.
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Analysis of free-boundary plasma equilibrium in a con-
ventional stellarator shows [1] that the pressure-induced shift
∆β of the plasma column must be fairly large at high β:

Here β 0
ep = µ2

bb/R, µb is the rotational transform at the plasma
edge, b is the averaged minor radius of the plasma, R is the
major radius, β is the volume-averaged ratio 2p/B2

0 with p
being the plasma pressure and B0 the toroidal magnetic field
at r = R, and β 0= 2p(0)/B2

0 is the β value at the magnetic axis.
For Large Helical Device (LHD) with R = 3.9 m, b = 0.6

m, µb = 1 [2] we have β 0
eq = 0.15, and the lower bound in (1)

is 0.1 for β = 3%, which gives 6 cm outward shift.
If such a large shift would appear in LHD, it certainly

could be observed, for example, when the Shafranov shift
was measured with soft X-ray CCD camera [3]. However,
there is no mentioning of observations of large ‘global’ plas-
ma shift in [3]. Therefore a question arises why the plasma
column shift in LHD is actually smaller than the above esti-
mate.

The pressure-induced plasma shift can be suppressed by
the vertical field B⊥ as described by the formula (see [1,4]
and references therein)

where ∆b is the observed shift of the plasma boundary or
‘global’ plasma shift, the expressions for ∆β and ∆⊥ are given
below. The field B⊥ can be produced by the currents in the
poloidal windings, which can be controlled, and by the cur-
rents induced in the conducting structures around the plasma
when the plasma column tends to expand toroidally with

1. Introduction increasing β, as described by ∆β . Such a case can be realized
in LHD which is a superconducting device operating now
with high β [2,5,6].

Theory of current-carrying plasma equilibrium in a toka-
mak with an ideally conducting casing is described in [7,8].
These studies have been stimulated long ago by the early
experimental results showing the urgent need of providing
the plasma equilibrium along the major radius in a tokamak
[9]. However, the same problem for stellarators has not yet
been analyzed. This is so because until recently the stellara-
tors operated at rather low β, and the plasma equilibrium in
stellarators is provided by the original magnetic configura-
tion which is not strongly distorted by the equilibrium plasma
currents at low β.

The problem of global plasma equilibrium in a stellara-
tor was discussed in [10,11], see also the reviews [1,4]. The
present analysis is based on the models described there. The
new element introduced here is the ideal wall at some dis-
tance from the plasma. In [1,4,10,11], the vertical field B⊥

was considered as a free parameter. Now we must find it
under the constraint of flux conservation due to the ideally
conducting wall.

2. Brief introduction to the model and defi-

nitions

The model is based on the modified stellarator approxi-
mation allowing description of tokamaks and stellarators
within the unified approach [1,4]. We consider a ‘conven-
tional stellarator’ with a circular planar axis and helical
fields, a device like LHD or CHS. Within the model, the
plasma boundary is described as a circular torus perturbed by
the helical field. Large-aspect-ratio expansion is used in ana-
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lytical calculations here. The shift ∆b of the plasma boundary
is assumed to be small: ∆b /b << 1. For derivation of the basic
relations from the general equilibrium equations and more
detail see [1,10,11].

Magnetic surfaces ψ = const in stellarators (or toka-
maks) are described by the function

where ψv is the poloidal flux of the helical magnetic field,
ψext is the poloidal flux due to the external axisymmetric
field, and ψpl is the plasma-produced poloidal flux. At the
first step of our analysis we need the function ψ outside the
plasma, in the vacuum region between the plasma and the
wall.

The plasma-produced poloidal magnetic flux outside the
plasma in a stellarator was calculated in [11]:

where (l, α) are the polar coordinates with origin at the center
of the plasma cross-section,

BJ = J/(2πb) is the magnetic field of the current J, and C is a
constant which can be related to plasma parameters by
matching the solutions for the magnetic field at the plasma
boundary.

The poloidal flux ψv of the helical magnetic field B
~

through the magnetic surface is calculated by the formula [1]

where r, ζ, z, are the cylindrical coordinates associated with
the main geometrical axis, 

^
f is the oscillating part of the inte-

gral of f over ζ, Bt is the toroidal magnetic field, and brackets
〈…〉ζ denote the averaging over ζ. The most simple approxi-
mation for ψv is obtained in coordinates (ρ, u) related to the
geometrical axis: ψv = ψv(ρ).

For our purposes, in the geometry assumed (circular
averaged cross-sections of the plasma and the conducting
wall), it is sufficient to keep in ψext a term describing the
external homogeneous vertical magnetic field:

Next we must find the constraints from the boundary
conditions for the function ψ.

3. Boundary conditions

By definition, the function ψ must be constant at the
plasma boundary and at the ideal wall. Thus, at these two
boundaries of the vacuum region we must satisfy the condi-
tions

We describe the plasma boundary as l = b. If ψ is given as a
function of l and α,

the condition ψ = const at the plasma boundary is satisfied by
B(b) = 0.

The plasma-generated part of ψ has been already calcu-
lated in such a form, eq. (4). We have to express two other
functions in (3) in variables l and α.

The poloidal flux of the external vertical field, eq. (8),
can be rewritten as

Here we use the relations between the coordinates:

These relations give

which is valid for l >> ∆b. In this case, in linear approximation
in ∆b /b,

Combining (4), (11) and (14) and comparing the result
with (10), we obtain

and the boundary condition B(b) = 0 gives

Here f1 is the function defined by (6), and

In the model, the ideal wall is prescribed by ρ = ac,
which allows a shift of the plasma relative to the wall. To
apply the constraint (9) at ρ = ac, we must transform ψ to the
form

so that the condition ψ = const at the wall is satisfied by E(ac)
= 0.

Similar to (13), for ρ >> ∆b we can express l from (12) as

After transformation of the functions ψpl and ψext to variables
(ρ, u) we obtain

and, finally, from E(ac) = 0:

Relation (16) is a part of the equilibrium conditions for a
plasma. This follows directly from ∇p = j × B and must be
satisfied in any case. Equation (21) is an additional constraint
resulting from the requirement that the wall is ideal.

(3)ψ ψ ψv ext ψpl= + + ,

(4)ψ π αpl = 2 [ f0 f1(l) (l)+ cos + …],

ln − 2 (5)
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ζ (7)= 2   rπ 2 < z r / t > ,

(8)ψext ψ= 0(t) + πB⊥(r2 2− R ).

    = const. (9)ψ

= (10)ψ αA(l ) + B1(l)cos ,

= (11)ψ πext b bB⊥ −∆ ∆ α α[(R + )2 2(R+ )lcos + l2 2cos ].

(12)ρ ρα α∆r = R − cosu = R + b − lcos , .sinu lsin=

l − bcos (13)ρ α∆≈ ,

cos(   ) (14)ρψ α∆≈v (  )lψv (  )lψv− b' .

(15)B(l) = 2   f1(l)π 2 RlB⊥π− − ψ ∆'v b(l ) ,

(16)f1(b) −  + ∆RbB⊥ R bB
* = 0.

(17)* ≡B B−
2  R
ψ'

π
µv (b)

R

b
= b 0.

(18)ψ ρ= + cosuD(  ) ρE(  ) ,

cosu. (19)∆≈ ρ + bl

(20)E(  ) 2   R   B⊥(  )fρ ρπ π∆= + −2 [ ]'0 (  )f ρ ρ1b ,

(21)(b/ac)[ RbB⊥(ac) = 0.b1 + −∆f 0f ' ]
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Without the wall, we have eq. (16) which gives ∆b as a
function of B⊥ and f1 with B⊥ being a parameter. With ideal
wall, we have two equations: (16) and (21). Subtracting one
from another to eliminate B⊥, we obtain

which, by using (5) and (6), can be transformed into

The constant C, first appeared in (6), is given by [11]

So, the equality (23) can be rewritten in a form convenient
for further use:

5. Two opposite limits: tokamak and cur-

rent-free stellarator

Since no restriction has been imposed on BJ and B* in
the above derivation, expression (25) must be valid for any
ratio between B* and BJ. In other words, it can be applied
either to tokamaks, B* = 0, or to stellarators without current,
BJ = 0, which are two limiting cases. It describes, as well,
any intermediate configuration (stellarators with current).

For a tokamak, B* = 0, relation (25) is reduced to

where Λ ≡ − RH1/(bBJ). This is a well-known Shafranov’s
result [7] for a tokamak plasma. 

The tokamak expression (26) cannot be used for current-
free plasma in stellarators (more precisely, for equilibrium
configurations with small BJ /B*) because Λ is not defined for
BJ = 0 when H1 is finite. Since B* and BJ enter eq. (25) in dif-
ferent ways, it is impossible therefore to draw a close analo-
gy between tokamaks and stellarators in this case.

For a current-free plasma, eq. (25) gives

The quantity H1 can be found from the magnetic meas-
urements outside the plasma [11]. The shift ∆b itself can be
measured by the magnetic loops and probes [11, 12]. Thus,
eq. (27) relating the measurable values allows experimental
verification.

Equations (25), (26) and (27) clearly show the effect of
the conducting wall on the plasma shift. In all cases, for ac =
b they give a natural result ∆b = 0. This illustrates a general

tendency: the plasma shift ∆b is smaller for the wall closer to
the plasma.

6. Current-free stellarator with circular shift-

ed magnetic surfaces

If the surfaces ψ = const near the plasma boundary Γ are
circular (the relative shift is allowed), we obtain [11]

which is valid for both the tokamaks and stellarators. If we
assume that the model of circular shifted magnetic surfaces is
applicable for the description of the whole plasma column,
one can obtain from the equilibrium equations [1,4]

where

and Cps is the coefficient describing the reduction of the
Pfirsch-Schlüter current when the plasma column is strongly
shifted relative to the geometrical center of a stellarator.
Usually Cps ≈ 1 in conventional stellarators. For the case con-
sidered, eq. (28) yields

This allows us to rewrite (27) in a compact form

where

The latter is the free-boundary pressure-incduced plasma
shift disussed in the Introduction.

Expression (32) explicitly describes the ideal wall effect
on the pressure-induced shift of the current-free plasma col-
umn in a stellarator. The effect is stronger for the wall closer
to the plasma. However, the effect is noticeable even when
the gap between the plasma and the ideal wall is rather large.
For example, eq. (32) shows that for b/ac = 0.7 the wall effect
results in 50% reduction of the shift. This means that in the
example considered in the Introduction we would obtain 3
cm plasma shift with the ideal wall instead of 6 cm for the
free-boundary case.

Note that ∆b can be also written in the form (2) with ∆β

given by (33) and with

(this follows from (16) for the current-free plasma).
Equations (32) – (34) imply that with ideal wall ∆⊥ = −
∆β b2/a2

c, so that in this case

The latter relation gives the value of the vertical field pro-
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4. Equation for ∆b
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duced by the currents induced in the ideal wall.

7. Conclusion

The analysis shows that the ideal wall must strongly
affect the pressure-induced plasma shift in helical devices.
According to (32), the effect is strong even for b/ac = 1/2.
The plasma shift reduction due to the currents induced in the
wall may be a reason why the Shafranov shift measured with
soft X-ray CCD camera [3] was small.

According to (32), the plasma shift may be completely
suppressed by the wall reaction in case only when the plas-
ma-wall gap is negligible. In real devices, the gap is finite.
For LHD, a rough estimate can be b/ac = 0.6/0.9 [13]. In this
case, the plasma shift must be twice smaller than it would be
without the wall. For β ≥ 3% we obtain from (32) that the
shift will be several centimeters in LHD. Such a shift is large
enough to be measured, which can be used for diagnostic
purposes. Therefore, the problem deserves more attention.
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