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Abstract

The small scale vortical structures generated by the ion polarisation drift nonlinearity appear as an intermediate
step in reorganisation of plasma flows (e.g. decays of zonal flows). We find that a lattice of vortices is an exact
solution at stationarity of a model equivalent to the Hasegawa-Mima equation and provide explicit solutions.
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1. Introduction

Due to the strong nonlinear character the ion drift wave
generates turbulent flows and also coherent structures [1-2].
The radially extended eddies of the Ion Temperature Gradient
driven instability (ITG) are a major agent of transport of
energy in tokamak plasmas. At space scales of the order of
the ion Larmor radius (ρs), the polarisation drift nonlinearity
induces condensation of large flows into small vortices, very
similar to the superconducting media. There is also an
intermediate space scale, of the order ρsLn  where the flows
are dominated by the scalar nonlinearity [3]. In this range one
finds monopolar vortices which represent a reminiscence of
the anticyclonic monopoles at lower scales and are very robust
without being solitons. At the same scale, exact solutions
(with scalar nonlinearity) have precisely the geometry of the
zonal flows.

The dynamics on the larger scales is structuraly unstable
against the increase of presence of the polarisation drift
nonlinearity. Higher level will induce decay of the flow into
small vortices. However these vortices evolve by collisions
and merging and at late time the flow can exhibit a regular
pattern, a process similar to the Euler ideal fluid [4]. From
this perspective, this nonlinearity acts to reorganize the flow
and at early stages it traverses states of turbulence and random
vortices. The target of this reorganisation is a state of the fluid
which associates with the self-duality.

We are interested in the small scale vortical solutions of
the Hasegawa-Mima (HM) equation [1] since the numerical
simulations show that the exact zonal flow solution breaks
down firstly into arrays of vortices. Such solutions are not

known for HM equation. We prove their existence and provide
the exact form.

2. Structural instability of the zonal flows

pattern and decay into vortices

At intermediate scales the ion drift wave is dominated
by the scalar (or KdV) nonlinearity, which leads to the Flierl-
Petviashvili (FP) equation [5]
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 (v* and u are
ion diamagnetic and respectively the plasma poloidal flow
velocities, B0 is the magnetic field, Ln is the density gradient
length and Te the electron temperature). We have identified
an exact periodic solution [6]
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with the condition a2 + b2 = sβ/6 where ℘ is the doubly
periodic elliptic Weierstrass function. The first parameter g2

of ℘, is fixed by the physical parameters as shown, while s
and the second parameter, g3 are fixed by boundary
conditions. When the FP equation is perturbed with the term
of polarisation drift the flow evolves to an ensemble of
vortices initially disposed in a regular array, Fig. 1 ([7] and
references therein). It is not possible to connect this evolution
to the Kelvin-Helmholtz instability in the absence of many
elements of the Prandtl model (pressure asymmetry, Bernouli
law) and the most suggestive explanation is connected with
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the similar phenomenon in the superconducting media. This
is also supported by the model we will propose below for the
stationary HM.

3. The stationary states of the Hasegawa-

Mima equation

The Euler equation has the solutions of the sinh-Poisson
equation as stationary states. In the case of the HM eq., there
is a similar model (developed in meteorology) where the
dynamics is represented by the motion of point-like vortices
in plane, interacting via a short range potential [2]. We
formalize this model in a continuum version by a “matter”
scalar field and a potential, asking that the density of “matter”
tends at large distance to a condensate of vorticity,
corresponding to the Larmor gyration. On this background,
the solutions of the HM equation appear as excitations. The
suitable model for this is the Abelian Higgs (AH) theory
(developed for superconducting media) which generates the
short range interaction (Kelvin functions with decay on ρs).
This model clearly exhibits a property which is less
transparent at the fluid level: the states are governed by an
action functional which at stationarity is extremized at the
self-dual point. The self-duality is a topological property
which means that the curvature of a geometrical structure is
vanishing. At this point the equation of motion derived from
the Lagrangian of the collection of point-like vortices
becomes

∆ψ = exp (ψ ) – 1

where ψ is the stream function. We will show that on periodic
domains this equation is integrable and we will give exact
solutions consisting of arrays of vortices.

4. The exact solution of the vortex

dynamics

The inverse scattering method on periodic domains
requires the determination of a system of linear differential
equations whose compatibility condition is equivalent to the

nonlinear equation (Lax pair). We have found for the AH
equation (λ is a constant):
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The possible solutions (ψ1, ψ2) must be an intersection of two
sets. These equations also determine the spectrum of
eigenvalues p where periodic solutions are possible. When a
single p has a single eigenfunction (i.e. the two eigenfunctions
are confounded) p ≡ pj belongs to the main spectrum, and the
Wronskian is zero. We assume there are 2N such eigenvalues.

We apply the standard procedure, defining the square
eigenfunctions f, g and h, and introducing the zeroes of g (the
auxiliary spectrum). The solution ψ (x, y) is expressed in
terms of these functions. The equations for the auxiliary
spectrum are
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The solution is based on the fundamental property of γ k (x, y;
p) of being defined when p maps the complex plane (of the
spectral variable of the Lax operator) to the complex function
given by the square root of the Wronskian. Since the later is
a polynomial in p, the square root defines a hyperelliptic
Riemann surface, i.e. a compactified double covering of the
complex plane with cuts connecting pairs of zeros of the
Wronskian. These are the points {pk, k = 1, ..., 2N} of the
main spectrum, plus the point zero and the point at infinity.
Pairs of zeros pk are joined by cuts and in addition the origin
is connected to infinity. This gives a number of N + 1 cuts
and generates a compact Riemann surface of genus g = N.
On this surface there are defined two objects characterising
the differential geometry of the curve: (1) a basis of the one
dimensional cohomology group of the surface; this means two
sets each of N closed paths on the curve (cycles), having
particular intersection properties. The two sets are noted aj,
and respectively bj, j = 1, ..., N. The intersections are aj ° ak

= 0, aj ° bk = δjk and bj ° bk = 0. A typical example, for an
elliptic curve g = 1 with the topology of the torus, consists of

Fig. 1 A large wavelength inital perturbation evolves to a set
of vortices.
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the two possible closed turns around the torus, the short way
(a) and the long way (b). (2) A basis in the ring of the one-
dimensional differential forms dµk = pN – k dp

R ( p )
, k = 1, ..., N.

With these two sets one calculates several quantities
which are invariants of the Riemann surface. Essentially there
are calculated integrals of the elements of the basis of
differential forms along the cycles aj and bj. These are called
periods and are organized in two matrices

A d
p dp
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It is useful to work with the inverse of the matrix A, C = A–1.
Using C, the matrix of A periods is reduced at the identity
matrix, and the matrix B becomes τ = CB, the τ-matrix, with
positive imaginary part.

Using this geometrical framework, the solution of the γk

equations can be obtained by oparating first a transformation
from the set {γk} to a set of functions {φk} representing
phases of motion along the cycles of the Riemann surface.
This transformation effectively linearises the motion, which
can be trivially integrated in these new variables.

We have to define the functions of the target set, the
phases {φk}. They are integrals of linear combinations of the
differential one-forms along paths on the Riemann surface,
each starting from an initial point γ0 and ending in the point
which corresponds to a function γl . The integrand is a
combination of the differential one-forms with coefficients
from the matrix C = A–1
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The mapping that realizes the correspondence from a
collection of points {γl, l = 1, N} of the hyperelliptic Riemann
surface to a manifold defined by the collection of points {φk,
k = 1, N} is called Abel map. The manifold generated by the
points {φk , k = 1, N} has genus g = N (as the initial curve)
and has the topology of a torus. It is called Jacobi torus. The
equations for the phases are
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The equations can be trivially integrated and we obtain the
(x, y) dependence of the phases

φ φk k kx y C x iy,( )= −( )+2 1 0 (6)

where φk0 are constants of integration, initial phases.
We note from Eq. (6) that the motion on the Jacobi torus

is entirely determined by the main spectrum through the
topological properties of the hyeprelliptic Riemann surface
(canonical cycles, differential forms, period matrices).

The next step consists of returning to the variables γk

and from there to the exact solution ψ. This is done as the
Jacobi inversion problem. The main role is played by the Θ
function. The definition of the Riemann theta function
involves a vector of dimension N (we denote it by φ) and a N
× N matrix τ whose elements have the imaginary part positive.
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The exact solution is
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with φk (x, y) = 2Ck1 (x – iy) + φk0. A form of the solution is
shown in Fig. 2.

5. Conclusion

The intermittent destruction of the regular pattern of the
FP solution (zonal flow) exhibits robust vortical structures,
strongly suggesting a HM dynamics. As an intersting problem
in itself (and for this particular application), the stationary
states of the HM eq. need to be investigated analytically. We
have shown that these states can be described by a nonlinear
model which has a Lax pair of operators and we have
obtained (using the inverse scattering method) explicit
solutions in terms of the Riemann’s theta function.

Fig. 2 The exact solution of the stationary Hasegawa-Mima
equation, which clearly shows the structure of lattice of
vortices.
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Under the effect of a perturbation this solution evolves
to a collection of cuasi-independent vortices with weak
interaction. They collide and merge to generate larger
structures [4] and the ITG eddies can recover on the linear
growth rate scale. The intermittent destruction of the transport
barriers traverses these states where the Reynolds stress is
isotropic. This supports the intermittent character of the ITB
dynamics [7].
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