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Abstract

Particle accelerations by a one-dimensional, electromagnetic (EM), dispersive pulse propagating along an external
magnetic field are investigated. As the pulse amplitude increases, cyclotron-resonance accelerations (CRA) evolve to
nonlinear-trapping, and cause particle reflections. Both the amplitude and dispersion strongly affect those accelerations,
revealing interesting phenomena of resonance bifurcations.
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1. Introduction

Accelerations of charged particles by an EM wave/pulse
have been studied extensively [1]. Here, particle accelerations
by a one-dimensional (1D), EM, dispersive wave packet in a
magnetic field are studied. The pulse has a Gaussian profile
with the following generalized linearly polarized electric field
(and its self-consistent magnetic field) directed perpendicular
to the z-axis along which it propagates: Ex(z, t) = E0e–{(z – vgt)/

l}2 + i (k0z – ω0 t + θ ); here, E0, z, vg, t, l are the amplitude, the
position, the central group-velocity, the time, and a measure
of the pulse-length, respectively, and θ is the phase constant;
furthermore, k0(ω0) is the wave number (angular frequency)
of the carrier wave. If the acceleration is relatively small, the
beam-like particles with only longitudinal initial velocities v0
experience the following perpendicular velocity shifts [1],
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with α = 1 – vp/v0, ∆t = l/(βvp), β = ⏐(v0 – vg)/(v0 – vp)⏐ and
γ 0 = (1 – v0

2/c2)–1/2.
Other notations are standard. The phase velocity is

defined as vp = ω0/k0. Among dispersion effects only vg ≠ vp,
i.e., vp = 0.1c and vg = 0.05c, will be considered, assuming
that the time-scales for other effects are sufficiently longer
than those for accelerations. The assumption should be

particularly valid for stationary pulses like solitons. We will
present below some numerical solutions to the equation of
motion of electrons [1], and analyze them, increasing E0.

2. Results

2.1 Linear cyclotron-resonance

We start with a linear case, which may be well described
by Eq. (1). Fig. 1 depicts among others velocity shifts of
electrons with initial velocity v0 after penetrating an EM wave
packet with En = eE0/mcω0 = 0.001 and ln = l/(c/ω 0) = 2.0.
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Fig. 1 Perpendicular velocity shifts of electrons after
interaction with a linear pulse are plotted as a function
of v0. The dashed curve and circles respectively show
analytical and numerical solutions for final
perpendicular velocity-shifts due to a nondispersive
wave packet with vp = vg = 0.1c, respectively, which are
in excellent agreement with each other. The dotted
curve shows analytical perpendicular velocity shifts (1),
while diamonds depict numerical ones for a dispersive
wave packet with vp = 2vg = 0.1c.
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Since the magnetic field strength will be held constant at Ωe

= ω 0, the electrons with v0 ≈ 0 are cyclotron-resonant. Overall
agreement between the theory and numerical results is rather
good. The reasons for the small discrepancies in the dispersive
case are small relative velocities between the particles and
the pulse as well as the dispersion. The numerical results
indicate the absence of θ dependence (not shown).
Perpendicular acceleration is dominant for linear pulses.
Hence, this is a transit-type acceleration, through which
particles penetrate the entire wave packet. In this velocity
range the dispersion increases accelerations and reduces the
resonance width by factor of two, which may be analytically
reduced from the factor 1/β = 2 in Eq. (1) [1].

2.2 Weakly nonlinear cyclotron-resonance

Fig. 2 shows final velocity shifts of electrons for a
weakly nonlinear wave packet with En = 0.01. Here, evidently
the linear theory hardly accounts for the numerical values,
which show much broader acceleration region as well as
multi-peaks. The dispersion slightly reduces the resonance
width, while the maximum velocity shifts remain hardly
affected. However, the most outstanding dispersion effect is
the further bifurcation of the resonance peaks. The strongest
acceleration occurs at v0 = –0.02c, while that in Fig. 1 occurs
at v0 ≈ 0. At this stage the θ dependence is still absent (not
shown). Owing to the relatively small longitudinal
accelerations (not shown), the particles traverse the entire
wave packet, while being accelerated.

2.3 Nonlinear cyclotron-resonance

Fig. 3 presents the electron velocity-shifts due to a
nonlinear dispersive wave packet with En = 0.1. Diamonds
depict maximum perpendicular velocity-shifts, while the
upward and downward triangles show maximum and
minimum parallel ones (and significant θ dependence),
respectively. It is observed that strongly accelerated particles
are reflected by the wave packet. This case differs from the
previous ones dramatically. Its overall appearance is
reminiscent of quasi-trapping (QT) [1]. However, QT by an

EM pulse is expected [1] only at En > (v0 – vp)/c > – En ,
while Fig. 3 shows that accelerations are realized
approximately at 2En > (v0 – vp)/c > - 2En. In addition, at
0.15 > v0/c > 0.05 net accelerations are suppressed. It turns
out that at 0.2 > v0/c > 0 the cyclotron resonance condition
cannot be satisfied. Then, what is the acceleration mechanism
present at 0.2 > v0/c > 0.15 and 0.05 > v0/c > 0?

2.4 Phase-trapping and nonresonant cyclotron

acceleration

The shift of CRA to nonlinear trapping may be explained
in terms of phase trapping [2], which is an interaction
mechanism applied to whistler waves and more recently to
EM ion cyclotron waves; these waves are right-circularly
polarized EM waves with l = ∞. For particles interacting with
such a wave there exists a second Hamiltonian H2 [2]:

H
V

c k c

k c

B

B

V

c

e
2

1

2 0

2

0

0

1

0

= +
⎛

⎝
⎜

⎞

⎠
⎟

+

γ α

γ
ω

α θ

cos

sin cos

Ω

Here, V = ⏐v0 – vp⏐, γ is the Lorentz factor of the particle, B1

is the magnetic field amplitude of the wave, α is the pitch
angle of the particle measured in the wave frame, i.e., v⊥/(vz

– vp) = tanα. The lowest values of H2 are given when θ = π.
Therefore, H2 with v0 = 0, V = 0.1c and θ = π is plotted in
Fig. 4 with various values of En. The electrons which start
from cosα = –1, i.e., cyclotron resonance [2] may travel along
the dashed line until they hit a corresponding curve, where
they are reflected. In Fig. 4 and H2 it is evident that as En is
increased the resonance center shifts from cosα = –1(v0 = 0)
toward 0(v0 = vp) and the width broadens considerably.
Namely, the overall trend of electron velocity-shifts in Fig. 3
may be at least qualitatively explained in terms of the phase
trapping.

3. Conclusions

As the pulse amplitude increases and/or the pulse is
made more dispersive, the cyclotron resonance bifurcates,

Fig. 2 Perpendicular electron velocity-shifts after interaction
with a weakly nonlinear pulse are plotted as a function
of v0. The perpendicular velocity shifts due to the
nondispersive wave packet shown here by squares
demonstrate a bifurcation of cyclotron resonance.
Other symbols are the same as in Fig. 1.

Fig. 3 Parallel and perpendicular electron velocity-shifts due
to a nonlinear pulse are plotted as a function of v0.
Parallel accelerations are generally stronger than
perpendicular ones
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showing multi-resonance velocities, and finally transforms to
phase trapping[2] characterized by large velocity shifts and
broad resonance widths. Also, as the amplitude of wave
packet increases, the transit-type CRA is transformed to the
reflection-type phase-trapping, and the center of the resonance
velocity consequently shifts to vp. It is likely that these
bifurcations are caused by the finite extent of wave packet
and the phase trapping.
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Fig. 4 The second Hamiltonian H2 is plotted as a function of
cosα for En = 0.001, 0.003, 0.01, 0.03, and 0.1 (from top
to bottom, respectively). The dashed line depicts H2 = 0.

448




