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Abstract

A method to derive analytical expressions for bootstrap current coefficients is studied. The drift kinetic equation is
divided into two parts corresponding to the effects of local and global structures of magnetic fields. The divided trans-
port coefficients can be approximated by connecting the results of only three types of asymptotic expansions of the
divided equations. The current coefficients obtained by adding these two parts approximately reproduce results of a
direct numerical calculation of the drift kinetic equation.
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The analytical theory of bootstrap currents in non-sym-
metric toroidal plasmas [1-5] has been constructed based on
the moment equation approach [6]. In this approach, parallel
(to the magnetic field) momentum balance equations satisfy-
ing particle, momentum, and energy conservation are used
together with neoclassical parallel viscosities given by solu-
tions of the linearized drift kinetic equation (DKE). The vis-
cosity forces include two parts; damping force against the
parallel flows and driving force for the flows due to radial
gradient forces. In stellarators, both of contributions due to
ripple and banana trapped orbits are included in the driving
force. These trapped orbits generate the driving forces in
opposite directions to each other while their contributions to
the damping force have same direction. Here we discuss a
method to express analytically this driving force part of the
viscosity under the co-existence of two types driving mecha-
nisms. The treatments of the damping force part in general
non-symmetric toroidal plasmas [7] are substantially identi-
cal to those in symmetric plasmas such as tokamaks and thus
details of them are out of scope of this paper. However, we
should note that, even in the symmetric plasmas, the lin-
earized DKE including the complete parts of the Vlasov and
collision operators with the conservative properties could not
be solved analytically. Therefore, for the damping and driv-
ing forces in tokamaks [6], a connection formula was used to
smoothly connect results of three types of asymptotic expan-
sions of the DKE; (1) banana regime expansion giving the
viscosity of ∝ν/υ, (2) plateau regime expansion giving that
of ∝(ν/υ)0, and (3) Pfirsch-Schlueter regime expansion giv-
ing that of ∝(ν/υ)−1, where υ/ν is the collision mean free

1. Introduction path. The collision frequency regime boundary determined
by this connecting method corresponds to the bounce fre-
quency of the banana-trapped orbits [6]. Exactly speaking,
the parallel viscosity due to the existence of banana trapped
orbits includes also a direct contribution of circulating parti-
cles in the banana regime [1-6]. For general collisionality
regimes in stellarators, we have to express the co-existence of
two types of the forces with opposite directions and with dif-
ferent bounce frequencies of the corresponding trapped orbits
by unifying these previously established methods.

On the other hand, various numerical methods to direct-
ly solve the DKE without any asymptotic approximations
have been developed to study ripple diffusions in non-sym-
metric toroidal plasmas. However, these codes often
employed the pitch-angle-scattering collision operator
instead of momentum conserving operators, since the effect
of parallel momentum transferring parts in the collision term
was negligible in the calculation of the ripple diffusions [7].
The relation of the numerical solutions given by these codes
with the analytical theories for the flows based on the
moment equations had not been clarified [3,8,9]. Motivated
by recent design activities for advanced stellarators, a method
was developed recently to interpret the direct solution of the
linearized DKE with the pitch-angle-scattering collision
operator within the framework of the moment method [7]. In
this method, the formal expression of the viscosities based on
the numerical solution directly coincides with that in the pre-
vious analytical theories. The results given by this method
clarified that the driving forces do not change their depen-
dence on the collisionality (∝ν/υ, ∝(ν/υ)0, ∝(ν/υ)−1) and
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their polarity simultaneously. This driving force cannot be
expressed analytically by appropriate connections of only
three types of asymptotic results as the previous tokamak the-
ory used. However, this numerical result also suggests that if
the total driving force can be divided into appropriate two
parts with different polarity and collision frequency depen-
dence, the divided parts can be approximated by combining
previously established analytical methods. This dividing
qualitatively corresponds to the separation of two types driv-
ing mechanisms discussed above. Because of difference of
the pitch-angle variables (banana : the adiabatic invariant of
the drift orbits µ, plateau and Pfirsch-Schlueter : the pitch-
angle parameter ξ ≡ υ||/υ [10]) used in analytical calculations,
we have to divide here the linearized DKE itself having a
non-linearity with respect to the magnetic field strength mod-
ulation δB on the magnetic flux surface. This separation of
the DKE seems to be uniquely determined by one require-
ment from the banana regime calculation in which the treat-
ments of trapped and circulating particle distributions must
be separated. Here we extend a dividing method for the DKE
developed in a previous banana regime theory [2-4] to the
collisional regimes. It is shown that the resulting divided
equation set not only includes the previous banana regime
theory, but also is a practically useful separation of the two
types driving mechanisms in general collisionality regimes.
Comparisons with the numerical results to confirm a validity
of a derived formula are also shown.

2. Separation of the parallel viscosity force

In the banana regime theory in non-symmetric toroidal
plasmas [2-4], a specific method was used to obtain only the
parallel viscosity force directly without solving full part of
the equation. The distribution function for the circulating par-
ticle can be calculated analytically using a Fourier expansion
even in the banana regime where µ is used as the pitch-angle
variable. On the other hand, it was also known that the con-
tribution of the trapped particles to the driving force can be
determined by incompressible particle and heat flow patterns,
which are strongly affected by the local structure of the mag-
netic field such as the helical ripple in stellarators. Using
these characteristics of distribution functions of circulating
and trapped particles, Shaing, et al. [2-4] subtracted a part
expressing the effect of this local structure from the DKE,
and then calculated the circulating particle distribution based
on the remaining part of the equation. Since this separation
was done on the lowest order equation in the banana regime
expansion, the divided equations did not include Coulomb
collision effects. Here we extend this theory to collisional
regimes by adding a linearized collision operator as follow-
ing.

To discuss about general collisionality regimes, it is
convenient to consider at first the linearized DKE defined in
ref. [7]. The solution for the particle species a is determined
by the perturbed distribution functions GXa and GUa. The for-
mer function GXa, which is driven by the radial gradient
force, satisfies the equation,

Here, V|| ≡ υξ(B/B)·∇ + VM is the linearized Vlasov operator,
where VM ≡ −(υ/2)[(B·∇lnB)/B](1 − ξ2)∂/∂ξ is the mirror
force operator. The linearized Coulomb collision operator
Ca

L includes only the pitch-angle-scattering operator [7] and
the energy scattering Krook collision operator for l = 2 spher-
ical harmonic perturbation [6]. The particle velocity υ and
the pitch-angle parameter ξ are used as the velocity space
variables here. In discussions on the plateau and the Pfirsch-
Schlueter asymptotic calculations, we show here the obtained
equations and numerical examples for the Boozer coordi-
nates. The magnetic field strength is assumed to be given by
the Fourier expression B = ΣBmn

(Boozer)cos(mθB − nζB), in the
flux coordinates (s,θB,ζB), where θB and ζB are the poloidal
and toroidal angles, respectively, and s is an arbitrary label of
a flux surface. By applying the method in refs. [2-4] to sub-
tract the part corresponding to the local structure effect, the
source term σXa corresponding to the radial gradient forces
can be written as σXa = σXa

(sym) + σXa
(asym) by using

Here, H2 is a constant indicating the flux surface averaged
effect of the local structure of the magnetic field on the
incompressible flow. This constant is defined in refs. [2-3]
using the Hamada coordinates. Definitions of the other quan-
tities in eqs. (2)-(3) are those in ref. [7] so that χ' and ψ' are
the radial derivatives of the poloidal and toroidal magnetic
fluxes, respectively, and V' is the radial derivative of the vol-
ume enclosed by the flux surface, where the derivative is
denoted by ' = d/ds. In eq. (2), Bθ and Bζ are the covariant
poloidal and toroidal components of the magnetic field,
respectively, and P2(ξ) in eq. (3) is the Legendre polynominal
of order l = 2. The charge and mass of the particle species a
are denoted by ea and ma, respectively, and 〈·〉 represents the
flux surface average. The source term in eq. (2) σUa ≡
−maV||(υξB) = −maυ2P2(ξ)B·∇lnB is that for the other DKE,
V||GUa − Ca

L(GUa) = σUa defined in ref. [7] to derive the flow-
driven part of the perturbation. In eq. (3), G is the generating
function related to the Hamada/Boozer coordinates conver-
sion [7] and can be calculated using the Fourier expansion of
B−2. The equation for GUa is identical to that used to derive
the damping force part in the previous theories for symmetric
and non-symmetric toroidal plasmas [1-6]. The analytical
expressions for this damping force part in non-symmetric
plasmas are shown in refs. [5,7]. It should be noted that
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explicit expression for GUa itself is not always required in
obtaining the asymptotic values of the mono-energetic paral-
lel viscosity coefficients, especially when the 〈B∫ υ||d3υυ〉
moments of the DKE is used to obtain the pitch-angle inte-
grated and flux surface averaged viscosity forces [1-6].

As shown in eqs. (24)-(25) in ref. [2] and Appendix D
in ref. [7], σXa

(asym) vanishes when the magnetic field
strength has a complete symmetry such as an axisymme-
try, or a helical symmetry, or poloidal symmetry. Only
σXa

(sym) remains in these completely symmetric cases. The
superscripts (asym) and (sym) denote that the part exists
only in non-symmetric configurations, and the part exists
even in the symmetric configurations, respectively. The
solution of eq. (1) is given by the sum of two components, 
GXa = GXa

(sym) + GXa
(asym), where GXa

(sym) and GXa
(asym) are the

solutions of V | |GXa
(sym) − Ca

L[GXa
(sym)] = σXa

(sym) and
V||GXa

(asym) − Ca
L[GXa

(asym)] = σXa
(asym), respectively. The for-

mer part GXa
(sym) is proportional to GUa and only its absolute

value is determined by the incompressible particle and heat
flows under the asymmetry. Therefore the already known
results on GUa are applicable to this former part. The origi-
nal purpose of this part in refs. [2-4] was the trapped parti-
cles. When we consider the case where the collision opera-
tor vanishes, the DKE in ref. [7] using eqs. (2)-(3) coincides
with the lowest order equation in the banana regime expan-
sion in refs. [2-4] and thus eqs. (1)-(3) automatically
include this previous banana regime theory. In this theory, 
V||GXa

(sym) = σXa
(sym) ∝ σUa was used to derive the contribu-

tion of the trapped particles. The remaining part 
V||GXa

(asym) = σXa
(asym) was used to derive the remaining effect

of the circulating particles without solving the trapped parti-
cle part. This contribution of the circulating particles due to
the asymmetry appears in the relatively collisionless limit
where the banana-trapped part of the distribution can be
treated by the banana regime expansion. With this separation
for treatments of the circulating and trapped particles, the
total driving force due to all of the particles was easily
obtained without the complete solution of the equations in
the banana regime theory [2-4]. The moment of the DKE
itself is used also in this step to derive viscosity force without
solving full part of the DKE. Also for general collisionality
regimes, this separation shown in eqs. (2)-(3) is a practically
useful separation of the effects of local and global structures
of the magnetic fields which make the ripple and banana
trapped orbits, respectively. In many stellarators with helical-
ly twisted structures giving large values for (ψ’/χ’)∂B/∂ζB,
the toroidicity component B10 is the dominant Fourier com-
ponent of σXa

(asym) as shown in ref. [2] while the dominant
Fourier component of σXa

(sym) ∝ B·∇B is the ripple compo-
nent. In plateau and Pfirsch-Schlueter expansions omitting
the mirror force operator [10], these Fourier compositions of
the source terms σXa

(asym) and σXa
(sym) directly determine those

of the response functions GXa
(asym) and GXa

(sym). The n = 0
component dominating GXa

(asym) expresses the banana-trapped
effects while the n ≠ 0 component in GXa

(sym) expresses the
ripple-trapped effects. Therefore eqs. (2)-(3) is a practically

useful separation of the local and global structure effects
especially when the divided driving forces have different
polarity and collision frequency dependence. As discussed
later on eqs. (4)-(8), this tendency of the separation, in which
the GXa

(asym) and GXa
(sym) dominate the collisioless and colli-

sional regimes, respectively, is not peculiar to stellarators
with helically twisted structures only, but fairly universal for
various types of non-symmetric toroidal plasmas. Hereafter,
we call GXa

(asym) “global” part, and call GXa
(sym) “local” part,

respectively.
Then the transport coefficient Na(K), which expresses

the parallel viscosity as the driving force, defined in ref. [7]
is obtained from this solution. We show here the expressions
of “global” part of the normalized mono-energetic coeffi-
cient N* ≡ Na(K)/[(c/ea)maυTaK3/2] due to the “global” part of
the perturbation GXa

(asym). Here, υTa is the thermal velocity
and K ≡ (υ/υTa)2. From the relation of σXa

(sym) and σUa shown
in eq. (2), the remaining part of the coefficient N*(sym) due to
the “local” part of the perturbation is directly obtained from
the normalized mono-energetic parallel viscosity coefficient
M * describing the damping force by the relation 
N*(sym) = −M*[(ψ'Bζ − χ'Bθ)/〈B2〉 + H2V'/4π2]/(2χ'ψ'). The
analytical expressions for M* are shown in ref. [7], and M* is
always positive in general toroidal configurations. By com-
bining the analytical expression of the parallel viscosity force
using these coefficients with the parallel momentum balance
eqs. [5,7,11], the bootstrap current coefficients of the neo-
classical transport matrix can be obtained.

The detail of the banana regime expansion for the “glob-
al” part of the equation is shown in refs. [2-4], and the result-
ing mono-energetic coefficient N*(asym) is given in the form of
a pitch-angle-integral as

where νD
a is the pitch-angle-scattering collision frequency

[6,7] and fc is the fraction of circulating particles [1-7]. The
integral ∫dλ in the range of 0 ≤ λ ≤ 1 indicates the sum of the
contributions of the circulating particles, and W(λ) is the
Fourier expanded perturbation of the circulating particle dis-
tribution. The explicit expression of this integral in the
Hamada coordinates is given in ref. [3] and that for the
Boozer coordinates is in ref. [4]. In the plateau and Pfirsch-
Schlueter expansions neglecting the mirror force operator,
the perturbed distribution functions are obtained by using a
Fourier expansion for the dependence on (θB,ζB) in full range
of ξ. The connected result given by these expansions is

(4)
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where Ipl and IPS are defined by

and

respectively. The transit frequency ωTa in eq. (5) corre-
sponding to the boundary between the plateau and the
Pfirsch-Schlueter regimes is defined in refs. [6,11]. The
relation of the anisotropy relaxation collision frequency νT

a

for the Pfirsch-Schlueter regime with νD
a is given by 

νT
a = 3νD

a + νE
a using the energy scattering collision frequen-

cy νE
a [6,7]. In calculations in next section, νT

a is replaced by
3νD

a, and subscripts and superscripts denoting the types of
collisions and the particle species are omitted following ref.
[7]. Connecting eq. (4) and eq. (5) at a collision frequency
satisfying |Ca

LGXa
(asym)(banana)| ≈ |VMGXa

(asym)(plateau)| gives a
good approximation since these terms are treated as higher
order terms in the banana and plateau expansions. Since
dominant functional components in both of these terms are
odd functions of ξ, we use l = 1 Legendre components of
them: [Ca

LGXa
(asym)(banana)](l = 1) = 3νa

DmacfcυξBNB/(2ea〈B2〉)
and [VMGXa

(asym)(plateau)](l = 1) = 3macυ2ξNP/(2ea〈B2〉1/2), where
NP is an appropriate constant expressing a representative
value for the mirror force term. The detail of this constant in
general multi-helicity stellarator is out of scope here and will
be reported in a separated article. However, in so-called sin-
gle-helicity stellarator model magnetic fields such as exam-
ples in the next section, a method to use the dominant Fourier
mode term in Σ of the plateau value of N*(asym) is practically
valid. This simplified method is used in the next section.
Using what we have noted above, the “global” part of the
mono-energetic coefficients is given by a banana/plateau
connection formula

Here, the transition collision frequency is multiplied by fc to
take the effect of the parallel momentum exchange term 
(Ha

(l = 1) in ref. [7]) into account for the banana regime viscos-
ity force.

By neglecting the higher order of δB in eq. (5) and
by using the definition of H2 [2-3], it can be shown that 
N*(asym) (νT

a→∞) ≈ 0. This is a result of a characteristic of the
“global” part in the banana regime. Although eq. (4) implicit-
ly includes a residual contribution of the trapped particle part
via the incompressible particle and energy conservation [2],
the contribution of the deeply trapped particle part almost
vanishes in the pitch-angle integral and the flux surface aver-
aging. The transit mean free path for the plateau/banana tran-
sition of the “global” part eq. (8) is usually longer than that
for the “local” part N*(sym) ∝ M* since the “global” part in the
banana regime expresses the effects of circulating particles
while the transitions of the “local” part is strongly affected by
the ripple trapped effects [7].

3. Numerical examples

We assumed the magnetic configurations to be 
B = B0 [1 − εt cosθB + εh cos(lθB − nζB)], l = 2, n = 10, 
B0 = 1 T, χ' = 0.15 T·m, ψ' = 0.4 T·m, Bθ = 0, Bζ = 4 T·m
and investigated dependence of the driving force on toroidic-
ity εt and helical ripple amplitude εh. In Fig. 1, we illustrate
the procedure to calculate the mono-energetic coefficients N*

based on the dividing method in a quasi-helically symmetric
configuration with εt = 0.01 and εh = 0.05. The “local” part
N*(sym) qualitatively corresponds to the driving force due to
the ripple-trapped orbits while the “global” part N*(asym) cor-
responds to that due to the banana-trapped orbits in this
example. The N*(sym) dominating the relatively collisional
regimes of ν/υ > 10−4 m−1 is always positive. This polarity
means the driving force making the flow in the direction of
the helical winding. The N*(asym) given by eq. (8) is negative
in the collisionality range of ν/υ < 10−1 m−1 but it dominates
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over the N*(sym) only at the collisionless limit of ν/υ < 10−4 m−1.
This difference of the dependence of these two parts on the
collisionality qualitatively indicates the difference of the
bounce frequencies and fractions of corresponding trapped
orbits. By adding these two components, N * having the
polarity reversal at ν/υ ~ 10−4 m−1 is obtained. Here we call
the change of the sign in N* polarity reversal. This result can-
not be obtained by the connection formula in ref. [11] with-
out dividing into two contributions with opposite directions.
Figure 2 shows comparisons of the mono-energetic coeffi-
cients N* obtained by using eq. (8), with those obtained
numerically by combining the DKES (Drift Kinetic Equation
Solver) code [12] with our conversion formula [7].
Following ref. [7], we plot the geometrical factor [1-5,7]
G(BS) ≡ −〈B2〉N*/M* instead of N* in this figure, where M* and
consequently N*(sym) are given by the DKES with the relation
[7] M* = (ν/υ)2D*

33/[1 −(3/2)(ν/υ)D*
33/〈B2〉]. Here, D*

33 is an
output of the DKES. Therefore the deviation of an analytical
result from the numerical one shown here indicates the error
of eq. (8). In the numerical results for the relatively collision-
less regimes of ν/υ < 10−3 m−1, N* has a weak dependence on
the radial electric field [3]. This dependence seems to be
caused by effects of the trapped/untrapped boundary layer in
the velocity space [13] combined with the bounce-averaged
part of the ripple trapped particle distribution function associ-
ated with the ripple diffusions [1,7]. In Fig. 2, we show the
results for the cases with the radial electric field strength of
Er/υ = 1 × 10−3 T, 3 × 10−3 T. The dependence of the numeri-
cal results in the collisionless limit of ν/υ < 10−5 m−1 on the

radial electric field is saturated in this range of the electric
field strength because of the suppression of the ripple diffu-
sions. Since eq. (4) is derived neglecting this boundary layer
effect [2,3], the connection formula eq. (8) is applicable for
these saturated states in the collisionless regimes and for the
collisional regimes where the dependence on the radial elec-
tric field disappears. The suppression of the boundary layer
effect due to the radial electric field is still small around the
boundary between the banana and plateau regimes at 
ν/υ = 10−3 ~ 10−4 m−1 and thus a deviation of the connection
formula from the numerical results remains fairly large espe-
cially for the case with εt = 0.1 and εh = 0.05. However, the
polarity reversal at ν/υ ~ 10−4 m−1 for εt = 0.01, εh = 0.05 and
at ν/υ ~ 10−2 m−1 for εt = 0.1, εh = 0.05 can be precisely pre-
dicted by the analytical calculation using eq. (8), since it
occurs in the plateau or the Pfirsch-Schlueter regimes of the
“asymmetric” parts where the boundary layer effect is small.

4. Concluding remarks

We have presented a method to derive analytical expres-
sions for the bootstrap current coefficients in stellarators.
Since this method separates two types driving mechanisms
for the flows in stellarators, connecting the results of three
types of asymptotic expansions gives a good approximation
for the divided transport coefficients. We have also shown
the numerical results to confirm the validity of derived for-
mulas.
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Fig. 2 The geometrical factor G (BS). The connection formula
(solid curves), and the numerical results for the cases
with Er /υ = 1 × 10−3 T(open circles) and 3 × 10−3
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