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Abstract

A Fokker-Planck type two-dimensional transport code for relativistic electrons in dense plasmas has been
developed. Being written in cylindrical coordinates with axial symmetry, the code can be used for analyzing the core-
plasma heating in spherical targets in fast ignition scheme. The feature of energy deposition of beam electrons injected
into cylindrical D-T plasma is examined. The contribution of self-generated electromagnetic field to core heating
profile is estimated.
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1. Introduction

In the so-called fast ignition (FI) approach to inertial
confinement fusion, an high intensity short-pulse laser is
focused on a pre-compressed pellet to generate a beam of
relativistic electrons which should heat the fuel to ignition
temperature. [1] Thus, the study of electron propagation and
energy deposition in dense plasma is essential in this scheme.

The propagation of fast electrons to the dense core
region, as well as laser-plasma interaction, has been actively
studied by means of particle simulations. On the other hand,
little is reported about the energy deposition process in the
dense core plasma. Since the collisions between the fast
electrons and the bulk plasma particles become significant in
the dense core region, a Fokker-Planck (FP) type calculation
would be appropriate for analyzing the core plasma heating.

Recently we developed a FP type transport model that
can calculate the time- and space-dependent energy deposition
rate of fast electrons in dense plasma. [2] The collision terms
includes (a) short-range (b < λD) binary collisions with the
plasma particles and (b) long-range (b > λD) collective effect,
i.e. collisions between screened particles. The effect of self-
generated electric field is taken into account by assuming a
current neutrality condition. So far, however, the code has
been written for one-dimensional (1-D) planer coordinate
system; the effect of magnetic field has not been included.
For more realistic examination of the core heating process,

multi-dimensional (at least two-dimensional (2-D) in
coordinate space) calculations are indispensable.

In this paper, we first extend our 1-D kinetic transport
model to 2-D one; the code is written in cylindrical
coordinates with axial symmetry. Next, we examine the
feature of energy deposition of fast electron beam injected
into stationary D-T plasmas. We also estimate the
contributions of the self-generated electric and magnetic fields
to the energy deposition profile.

2. Analysis model and calculation scheme

A relativistic FP-type transport equation is necessary for
analyzing the behavior of fast electrons. A general form of
the relativistic FP collision term was derived by Braams and
Karney. [3] Their collision term, however, is too complicated
to be used for numerical study. To reduce it to a simple and
tractable form, Nakashima and Takabe [4] assumed that ⏐u –
uj⏐≈ ⏐u⏐, where u ≡ p/me , uj ≡ pj/mj ( j = e, i), p (or pj) is
the momentum and me (or mi) is electron (or ion) rest mass.

In this study, we also adopt the same approximation as
in ref. 4; the collision term is reduced to a simple (linearized)
form. Furthermore, we extend it so as to include the long-
range collective effect. [2]

In the present analysis, we consider the 2-D (r-z)
cylindrical coordinate system (Fig. 1). Then, the relativistic
FP-type transport equation is expressed as
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where f(r, z, p, µ, ω, t) is the distribution function of fast
electrons, γ is the Lorentz factor, ne (or ni) is the number
density of the bulk electrons (or ions), S(r, z, p, µ, ω, t) is the
source term, µ is the directional cosine of the momentum
vector p relative to z axis and ω is the angle between the
planes formed by p and ẑ vectors and by the ẑ and r̂ vectors;
ẑ and r̂ are unit vectors in the z and r directions, respectively.
The Coulomb logarithm lnΛ is extended so as to include
contributions not only from short-range binary collisions but
also from long-range collective effect [2]; i.e.

ln ln lnΛ Λ Λ= +binary collective , (5)
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with

τmin = (∆DB/2)/λD , τ = γ – 1 ,

where v is the speed of the fast electron, λD is the Debye
length, ωp is the plasma frequency of the bulk electrons and
∆DB is the reduced de Broglie wave length.

The self-generated electric and magnetic fields E and B
are evaluated by means of the generalized Ohm’s law,
Ampere-Maxwell equation, Faraday’s law and the equation
for total current density J = Jf + Jb (Jf: the current density of
the fast electron, Jb: the current density of the bulk electron).
Neglecting some terms which are not essential for the present
case, we obtain

E J B ,= − + ∇×η η
µf

0
(8)
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where η is the plasma resistivity, and µ0 is the permeability
of free space. Assuming rotational symmetry, we evaluate the
fields Ez(r, z), Er(r, z) and Bθ (r, z).

The energy deposition rate of fast electron consists of
the energy loss rates PB + PC due to binary collisions and
collective effect, and the Joule heating rate PJ through return
current, i.e. Pdep = PB + PC + PJ. These rates are evaluated by
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P J JJ r z= +η Return, Return,
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where JReturn,r (or JReturn,z) is the component of return current
density in the r (or z) direction. The return current density is
calculated by

J J
p
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e

e
m

f d
γ
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(12)

In the multi-dimensional FP calculation, the amount of
calculations becomes enormous. Therefore, we have to select

Fig. 1 2-D cylindrical coordinates system.
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or develop an adequate calculation scheme, which saves a
memory and a time for calculations and fulfills a good
accuracy of calculations. As for the numerical solution for
the present case, the fully implicit scheme is used for t. For
the space (r, z) and the momentum ( p) variables, the 3-D
“explicit” cubic-interpolated propagation (CIP) scheme is
adopted. The angular variables µ and ω are treated by means
of 2-D “implicit” interpolated differential operator (IDO)
scheme. By using the CIP-IDO scheme [5], which is based
on Hermite interpolations of the profile for the dependent
variables over a local area, accurate calculations are possible
in spite of a relatively small number of calculation-meshes,
and hence the shortening of a calculation time can be
expected comparing with other schemes.

In the present calculation, the reflecting boundary
condition is applied on the beam axis (r = 0), while the free
boundary condition is used for the other spatial boundaries.
The upper and lower limits of the momentum p space are
treated by the free boundary condition. For the angular
boundaries ( µ = ±1; ω = 0, π), the reflecting boundary
condition is used. Here, we assume that the distribution
function f on an arbitrary coordinate (z, r, p, µ) is symmetric
with respect to the r-z plane, i.e. f (z, r, p, µ, ω, t) = f (z, r, p,
µ, –ω, t), and hence make calculations only for the half region
of ω (i.e. 0 ≤ ω ≤ π).

3. Results and discussion

To examine the energy deposition process of fast
electrons in dense plasmas, we consider a stationary D-T
cylindrical plasma ( ρ = 300 g/cm3, T = 0.5 keV), and
calculate the transport and slowing down of mono-energetic
(1 MeV) Gaussian (the half width at half maximum is 5 µm,
the peak intensity is 1020 W/cm2) relativistic electron beam
injected steadily into it. The source beam is directed forward
(µ ≈ 1) and isotropic with respect to ω. In this calculation,
the size of a unit space cell is 1 µm × 1 µm. The momentum
variable p is divided into 15 meshes, and the angular variables
µ and ω are divided into 11 meshes and 16 meshes,
respectively.

Figure 2 shows the spatial profile of energy deposition
rate at t = 0.4 ps. Here, the calculations were made for the
following three cases, i.e. Case (a) considering the electric
and magnetic fields, Case (b) neglecting the effect of magnetic
field and Case (c) neglecting the both fields. Figures 3 and 4
show the spatial profiles of self-generated electric field and
magnetic field at the same time-step, respectively. The self-
generated magnetic field grows about 250 Tesla at maximum
(Fig. 4). Because of this strong magnetic field, the beam
electrons are pinched toward the beam axis. Consequently,
the energy deposition rate and the self-generated electric field
are enhanced around the beam axis (see Fig. 2(a) and Fig.
3(a)). It is also shown that the self-generated electric field
shortens the penetration of the beam electrons into the dense
plasma. These effects would be favorable from the viewpoints
of the efficient core plasma heating.

Fig. 2 Spatial profile of energy deposition rate at t = 0.4 ps. (at
E0 = 1 MeV, I = 1020 W/cm3, ρ = 300 g/cm3, T = 0.5 keV)
(a) with electric and magnetic fields, (b) with electric
field and without magnetic field and (c) without electric
and magnetic fields.

Fig. 3 Spatial profile of the self-generated electric field at t =
0.4 ps. (a) with magnetic field and (b) without magnetic
field.

Fig. 4 Spatial profile of the self-generated magnetic field at t =
0.4 ps.
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4. Concluding remarks

We have developed the 2-D FP-type transport code in
cylindrical geometry and calculated the energy deposition
profile of fast electron beams injected into a stationary dense
D-T plasma. The code is possible to calculate precisely the
time- and space-dependent heating rate (energy deposition
rate) in dense plasma spheres. It has been confirmed that the
self-generated electric field shortens the penetration of the
beam electrons into the dense plasma, and that the self-
generated magnetic field pinches the beam electrons,
enhancing the energy deposition around the beam axis.
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