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Abstract

We have proposed a one-dimensional transport model based on critical-gradient fluctuation dynamics to describe
some of the properties of plasma turbulence induced transport. This model has the characteristic properties of a self-
organized critical (SOC) system. In this model, the flux is self-regulated by the stability properties of the fluctuations.
A high-gradient edge region emerges where transport dynamics is close to marginal stability. The core remains at the
subcritical gradient that is typical of a SOC system. Avalanches are quasi-periodic events triggered mostly near the
edge region.
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1. Introduction

Self-organized criticality (SOC) dynamics [1] can
explain some plasma transport phenomena that are difficult
to explain with a purely diffusive transport model. Sandpile
dynamics is an interesting paradigm for plasma transport [2,3]
and several models have been based on this analogy. We have
proposed a one-dimensional transport model [4] that is a
natural extension of the sandpile models applied to plasma
transport. The model is based on critical-gradient fluctuation
dynamics. It includes an evolution equation for the envelop
of the plasma fluctuations and a transport equation with the
diffusivity proportional to the fluctuation level.

When the fluctuation evolution is introduced, fluctuation
levels and fluxes of all magnitude are possible. We observed
large fluctuation amplitudes propagating mostly inward and
creating a wake of low-level stationary fluctuations. These
low-level fluctuations cause a diffusion-like process while the
large-level propagating fluctuations cause an avalanche-like
transport. Here, we investigate the space-time structure of the
avalanches. We show the existence of double quasi-periodic
processes with well-defined space-time structures.

2. Model

The model proposed in Ref. [4] consists of two equations
describing the evolution of the root-mean-square fluctuations,
Φ (x), and of the averaged particle density, h(x). They are

∂Φ
∂ t

= Φ(γ – µΦ) + S1 , (1)

∂h
∂ t

= ∂
∂x

µ0Φ ∂h
∂x

+ S0 . (2)

In the fluctuation equation, γ is the linear growth rate of the
instability, µ is the coefficient of the nonlinear term that is
responsible for the saturation of the turbulence, and the third
term, S1, is a small source term to guarantee a minimal level
of seed fluctuations. It is implemented as a low-level random
noise that represents the trigger of a classical diffusion
mechanism. The transport equation, Eq. (2), includes a radial
diffusion term and a random source term, S0. This source is
implemented by the addition of an amount δ with probability
p0∆t/δ each time step. In the diffusion term, we assume that
the diffusivity is proportional to the level of fluctuations and
is given by µ0Φ.

The underlying instability is assumed to be a critical-
gradient instability. Then the linear growth rate is

γ = γ 0 – ∂h
∂x

– Z c Θ – ∂h
∂x

– Z c , (3)

where Θ is the Heaviside function, and Zc is the absolute
value of the critical gradient.

This model represents a generalization of the classical
sandpile model used to interpret plasma transport [3] by the
addition of fluctuation dynamics that regulates the amount of
transport, which couples back to the fluctuations through the
gradient drive.

The numerical scheme used in solving these equations
is discussed in Ref. [4]. The boundary condition at the edge
is hedge = 0 (open end). At the origin, h is time advanced by
setting h0

t+∆t = h0
t – ∆tµ0Φ 0

t+∆tZ0. The fluctuation level Φ is
defined at radial points midway between grid points [4] so
the values at the boundary do not enter in the scheme. For
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the results shown here, Zc = 5, γ 0 = 1, µ = 200, µ0 = 100, and
∆t = δ = 0.05.

3. Description of the avalanches

Numerical results using the previously described model
show first a transient phase followed by a steady state regime.
In steady state, the function h can be characterized by its slope
Z = –dh/dx. An example is shown in Fig. 1 for a system with
size L = 3,200. There are four well-defined regions. Near
x = 0, transport is dominated by slow diffusion caused by the
background fluctuations, the S1 term in Eq. (1). In this region
the profile is close to parabolic and Z is a linear function of
x. There is also an edge pedestal region, for x > xT, where Z is
very close to the critical value and the transport is
quasicontinuous. This transition point, xT, depends on both p0

and the system size, L. The emergence of such pedestal and
its properties was discussed in Ref. [4]. In the core, there are
two regions. One has a nearly constant value for Z and
remains subcritical. In this region, transport is dominated by
intermittent avalanche-like events. Between this region and
the edge pedestal there is a region with a linear increase in
the slope. This suggests that diffusion may play a significant
role in this region. We work within a range of parameter space
where the profiles have a broad avalanche dominated region,
and the jump in the slope stays just at the edge, as shown in
Fig. 1.

In investigating the dynamics of this system, it is
interesting to focus on the time evolution of the particle flux
Γ = ΦZ. There is a different dynamical behavior of the fluxes
above and below the transition point, xT. Between the
transition point and the edge, there is continuous activity. In
the inner region, there are quasi-periodic flux bursts which
we call avalanches. They are the dominant transport
mechanism. These avalanches are triggered in the outer region
(x > xT), and they propagate inward (x < xT). They can
penetrate all the way to the center of the pile. Few avalanches
start in the inner region, but they are rare, and it takes a long
time for them to build up. Although most avalanches
propagate inward, all particle fluxes are positive, which causes

outward transport of particles. If we look at the time trace of
the fluxes at a fixed radial position x, the flux is bursty for
x < xT. It is practically zero most of the time, and suddenly a
flux burst occurs. Above the transition radius, there is a
continuous flux with what looks like a superimposed noise.

In Fig. 2, we have done a two-dimensional (2-D) plot of
the contours of the flux. The plot shows eight major events
in which the first avalanche reaches all the way to the center
and every successive avalanche runs to a shorter distance
inward. The inward penetration point of the avalanches
appears to have a sawtooth-like envelope. We can see that
most of the avalanches follow the pattern of having the
termination point moving outwards after each avalanche.
When the termination point of the avalanches has moved all
the way to the edge pedestal, a new avalanche goes all the
way to the center and the process starts again.

During an avalanche, the functional form of the flux at a
given time is a front-like structure and it propagates inwards
at a practically constant speed. Near the termination point,
the flux propagation slows down. These properties are
illustrated in Fig. 3, where we have plotted a sequence of
radial profiles of the flux during an avalanche. The plots are
done at equal time intervals. This front-like structure is driven
by a supercritical value of Z at a single cell, just at the
position of the front.

We have used the functional form of the avalanche as a
way to identify them and determine their basic parameters.
In a radial position where no avalanche is present, we follow
the time evolution of the flux. The appearance of a maximum
in the flux is an indication that an avalanche starts. We look
at the evolution of its neighboring cells to determine the
direction of propagation. Then we follow the evolution of the
maximum of the flux as a way of tracking the avalanche.
Parameter such as initiation point, penetration point, length,
duration, and total flux can be determined in this way for each
avalanche. These measurements allow us to study the
statistical properties of the avalanches.
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Fig. 1 Time-averaged slope of h, showing the four character-
istic transport regions.

0 25 50 75 100 125 150 175

0

200000

400000

600000

800000

x

T
im

e

Fig. 2 A 2-D plot of the contours of the flux in the radius-time
plane.
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The distribution of initiation points of the avalanches and
of the points of maximum inner penetration show clearly the
qualitative features described in the previous section. An
example of these distributions for L = 1,600 is shown in
Fig. 4. We can see that most avalanches start at the boundary
with the edge barrier region. They can penetrate all the way
in and the probability of avalanches starting in the inner
region decays exponentially inward relatively fast. The two
regions in the PDF correspond to the two regions in the slope
profile as can be seen in the figure.

We are interested in the avalanches that penetrate the
core region. As shown in Fig. 5, the probability distribution
function of the length and duration of these avalanches is
practically flat. This is consistent with the detail evolution of
the avalanches shown in Fig. 2.

4. Quasi-periodic events

Let us consider with more detail the dynamical process
of the avalanches. In Fig. 6, we have plotted the profile of
the slope Z for L = 1,600. In the figure, we compare the time-

averaged profile with an instantaneous profile at a given time,
excluding the avalanches. For the same time, we have plotted
in Fig. 7 the instantaneous profile of Φ .

We see that the instantaneous Z profile has a region with
strong radial fluctuations in the inside and a relatively smooth
profile outside. Both regions are separated by a deep
minimum in Z at x = xm. The reason for that is that the
minimum is the point where most of the avalanches coming
from the edge finish. The position xm of the minimum moves
outwards with time, it is what determines the edge of the
sawtooth in Fig. 2. The functional dependence of xm with t is
practically linear.
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Fig. 3 Logarithm of the flux versus radial position at eight
equally separated times during the evolution of an
avalanche.
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Fig. 4 Distribution of initiation points of the avalanches and of
the points of maximum inner penetration for L = 1,600
system.
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Fig. 5 Probability distribution function of the core avalanche
length and duration for L = 1,600 system.
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Fig. 6 Time-averaged profile with an instantaneous profile of
the slope Z for L = 1,600. The vertical line indicates the
position of xm.
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In the inner region, there is no activity and Φ remains
very low. Therefore, diffusion is low and the spikes generated
by the avalanches stopping are not eroded. In the outer region,
the avalanches travel through, and they leave behind a tail of
fluctuations that decays slowly as 1/t. This fluctuation tail
gives an average fluctuation level that enhances diffusion and
causes the profile to be smooth.

When xm reaches at its maximum value is set back to
zero. As the minimum in Z moves outward it becomes
shallower and some avalanches can go through all the way to
x = 0. When they do so, they also smooth out the inner region.
At the point that the whole core is smooth the avalanches
penetrated all the way through and the process start again.
The maximum value of xm is about the position where the
time averaged Z profile changes from being constant to
increasing with radius.

The dominant avalanche processes in the region where
the profile is smooth have a quasi-periodic character. This
quasi-periodicity of the avalanches is similar to the one
observed in the diffusive sandpile for small values of the
roughness of the profile [5]. The quasi-periodicity is evident
in the power spectrum of the flux across a fixed radial
position. An example of the spectrum is shown in Fig. 8 for
L = 400 at x = 200, in the avalanche dominated region. There
are two clear peaks in the spectrum. The lowest frequency

peak is associated with the frequency of the combined events
like the ones shown in Fig. 2. The second peak corresponds
to the frequency of the individual avalanches. For frequencies
below this second peak, the spectrum shows the 1/f decay
characteristic of SOC systems.

An estimate of the frequency of the avalanches can be
made by assuming that the transport at the core is totally
dominated by these quasi-periodic events. The flux during a
full event can be estimated by calculating the time behavior
of the fluctuations triggered by one of the front-like events
such as the ones in Fig. 3. After the event is been triggered,
γ = 0 in Eq. (1) and we can neglect the effect of the source
over a short time equal to the period T between avalanches.
Then, integrating Eq. (1), we obtain

Φ(x , t ) =
Φ1

1 + µΦ1t
, (4)

where Φ 1 is an integration constant. Then the flux balance at
the transition point is approximately given by

p0 xT T2 =
µ0
µ Z ln (1 + µΦ1 T2 ) . (5)

Since xT is close to L, the frequency of the avalanches, the
second peak in the spectrum of Fig. 8, is a function of Lp0.
On the other hand, the frequency of the combined events,
because there is a linear dependence on the penetration points
must be proportional to the frequency of the avalanches
divided by L. Therefore, the frequency of the combined events
(first peak in the spectrum) is only a linear function of p0. We
have done a sequence of calculations varying L but keeping
p0L = 0.016 constant, where these properties of the
frequencies of the two peaks of the flux spectrum have been
confirmed.

5. Conclusions

For the range of parameter space considered in this
paper, the transport model based on critical gradient
fluctuation dynamics leads to results very similar to the
sandpile with diffusion. The dynamics of this model is close
to the sandpile dynamics when the roughness of the profile is
slow. In this situation the profile is smoothed enough by the
diffusion and avalanches became quasi-periodic events that
are triggered near the edge of the system and penetrate
inwards. Because the diffusive term is created by the wake of
the avalanches, there is strong coupling between the size of
the diffusion in a radial region and the frequency of the
avalanches crossing that region. This leads to a double
periodicity of the avalanches.
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Fig. 7 Instantaneous profile of Φ for the same time as the
instantaneous profile of Z in Fig. 6.

Fig. 8 Power spectrum of the flux across x = 200 for L = 400,
p0 = 5 × 10–5.
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