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Abstract

A large poloidal flow is generated in an improved confinement state in tokamaks. Poloidal shock has been
predicted theoretically when a poloidal flow velocity increases. An extension of the model to include the poloidal
structure is made to obtain a self-sustained two dimensional structure. Its special cases with no shear viscosity
(decoupled) and large shear viscosity are solved.

Keywords:

poloidal shock, two dimensional structure, shear viscosity, E × B flow shear, tokamak

1. Introduction

The H-mode [1 ] offers a great advantage for improving
plasma confinement in tokamaks. A large poloidal flow is
generated by a large radial electric field in the tokamak edge
region in H-mode [2 ], and a shear flow is responsible for
improving confinement by suppressing anomalous transport
[3 ]. Many studies have been carried out to understand the
formation mechanism of a steep structure in the radial
direction [4-6].

In the tokamak edge region in H-mode, the poloidal flow
increases to Mp ~ 1, where Mp is the poloidal Mach number.
Appearance of a poloidal shock structure in the potential and
density profile has been predicted theoretically with such a
fast poloidal flow [7,8 ]. A measurement in the CCT tokamak
shows a poloidal density variation [9 ]. The existence of a
steep poloidal structure induces a deviation of constant
density contours from magnetic surfaces [10 ], and makes a
large poloidal electric field, which gives a large E × B flow
in the radial direction [11 ]. However, transport analyses are
often carried out with flux surface averaged quantities, i.e.
the poloidal structures are neglected. Neoclassical calculation
with low order Fourier expansion has been carried out to
include poloidal asymmetry [12 ], but it can take account of
only mild poloidal variations. There remains a key question
whether poloidal shocks are formed or not in H-mode
plasmas. If shocks are established, an extension of the
previous model to include the poloidal structure should be
needed for a quantitative transport analysis in H-mode.

A two dimensional structure with coupled radial and
poloidal variations must be considered, if a shock really

exists. In this paper a self-sustained two dimensional structure
model with shear viscosity (µ) is proposed. The existence of
the diamagnetic flow can also weaken the shock structure
[13 ]. In our approach, shear viscosity is taken into account
to consider radial structural coupling. Interaction between
quantities on different flux surfaces through shear viscosity
reveals a two dimensional structure in tokamaks. Special cases
with µ = 0 and µ >> 1 are solved. These calculations give a
typical shock structure and a structure determined by shear
viscosity, respectively.

2. Two dimensional structure

2.1 Basic equations

To construct model equations for the structure with
evaluation of self-sustained two dimensional effects, we take
the same assumption as Ref. [7]. Poloidal variations of the
density and the electrostatic potential are considered, but that
of the temperature is neglected. Electrons are isothermal, ions
are adiabatic, and ni = ne ≡ n is taken, where ni and ne are the
ion and electron density, respectively. Extending the model
in Ref. [7], radial flow and shear viscosity are taken into
account. By these terms, radial and poloidal structures are
coupled with each other. The structures are governed by the
momentum balance equation,

m n
d

dt
V J B p pi i i e i= × − ∇ +( ) − ∇⋅π , (1)

where Vi is the flow velocity, J  is the plasma current, pi and
pe are the ion and electron pressure, π i is the viscosity tensor
of ions, and mi is the ion mass. The viscosity of electrons is
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neglected because it is smaller by a factor of the order of
me /mi . In tokamaks the toroidal symmetry is satisfied, so

the parallel component and averaged poloidal component of
the momentum balance are given to be
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where Φ is the electrostatic potential, K = nVp/Bp, I = R2B
·∇ς, (∇·π i)bulk and (∇·π i)shear are the bulk viscosity, given by

neoclassical process [14 ], and the shear viscosity, given by
anomalous process [11], respectively. The radial flow is taken
into account, so ∂Φ/∂θ terms are involved in the left side of
Eqs. (2) and (3). The Boltzmann relation

n n
e

T
= exp

∆Φ
i

(4)

is adopted here to determine variables, where Ti is the ion
temperature, f̄  and ∆ f represent the spatial average and
perturbed parts of quantity f, respectively. The variable that
must be determined from Eqs. (2)-(4) are K, Φ and n, which
have radial and poloidal variations.

2.2 Decoupled model

A decoupled limit neglecting the radial flow velocity
(Vr/Vp << 1) and the shear viscosity (µ = 0) is considered to
show what kind of structure is formed when large Er shear
exists. This is the case solved in Ref. [7]. When the radial
flow velocity can be neglected, variable K becomes a function
of ψ only. The model equation (2) for the parallel component
can be reduced to be

2
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where χ = ln(n/n̄), Mp = KB0/n̄vtiCr , D = (4√π—/3)[IpsKB0/
(n̄vtiCr

2)], C = I2(∂Φ/∂ψ)2/2vti
2B0
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2

), Cr
2 = (5/3 + Te/Ti)/2, A′

= Mp
2/2 + 5/(36Cr

2), vti is the thermal velocity of ions, and Ips
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Fig. 1 χ profile when a large E × B shear flow exists, where a is the minor radius and θ = 0 is defined as the low field side midplane.
This is the case of a decoupled model where the radial profile of Mp is given as a parameter to solve the poloidal structure.
This figure corresponds to the density perturbation profile.
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is the function defined in Ref. [7]. For obtaining Eq. (5), n is
replaced by the variable χ, and assumed to be χ ~ O(√ε—).
Only terms up to O(ε) are kept in Eq. (5). The variable χ is
related to a potential perturbation ∆Φ by Eq. (4). This
equation gives a shock solution when Mp ~ 1. Parameter Mp

corresponds to the poloidal Mach number. When the Er profile
in the radial direction is given to be the solitary structure,
which is formed in electrode biasing H-mode [4], and the
poloidal flow is determined by E × B flow, a two dimensional
potential profile is obtained. We call the region where the
solitary structure exists shear region. The χ profile is shown
in Fig. 1. A large magnitude of the perturbation ∆Φ ~ Φ– with
poloidal variation is shown. A composition of the radial
solitary and the poloidal shock structure gives the total profile
of Φ. Their contours correspond to the streamline of the
plasma. A radial flow arises in the vicinity of the midpoint of
the shear region. This is due to the existence of the shock.
The shock position differs when Mp is different, so the large
variation of Er like in the solitary structure generates a flow
pointing to the radial direction. This result contradicts to the
assumption that Vr can be neglected, coming from decoupling
in the radial direction, so radial coupling must be taken into
account.

2.3 Viscosity coupling model

When shear viscosity is taken into account, the steep
structures can be smoothed and there is possibility to sustain
the assumption Vr/Vp << 1. In this system Eq. (2) becomes
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where E = I(∂Φ /∂ψ)/(vtiB0Cr). Simplified case with Mp given
by the solitary equation and strong toroidal damping E = Mp

is considered here. The χ profile is shown in Fig. 2. The
boundary condition is χ = 0 at the boundary of the shear
region. This condition corresponds to no perturbation caused
by a poloidal flow outside the shear region. The profile shown
in Fig. 2 is for a case with large shear viscosity (µ = 70 [m2/
s], which is much larger than the values estimated from
experiments in the TEXTOR tokamak µ = 10–2 ~ 100 [m2/s]
[15 ]) to obtain a characteristic structure formed by shear
viscosity. In this case the first term of the left hand side of
Eq. (6) is dominant, so an approximated solution is given as
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Fig. 2 χ profile for a large viscosity case with µ = 70 [m2/s]. The maximum amplitude is much smaller than that in Fig. 1.
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where tan θα = –D/2Mp
2. Smoothed structure is obtained, and

a poloidal variation is sufficient small (∆n/n̄ < 4%) to satisfy
the assumption Vr/Vp << 1. The maximum value of χ is
proportional to 1/µ. The peak position depends on Mp, and
the peak in Fig. 2 appears at that of Mp near the boundary.
This structure results from the strong radial coupling with the
shear viscosity and the strong boundary constraint χ = 0.

3. Conclusion

The two dimensional potential structure, which plays an
important role in a tokamak improved confinement state, is
studied in this paper. An extension of the model to include
the poloidal structure is carried out. A poloidal shock structure
has been predicted when the poloidal Mach number Mp ~ 1.
We propose two dimensional coupling model equations. A
decoupled limit, which corresponds to the model in Ref. [7],
shows a significant modification of the potential profile by
the appearance of the poloidal shock, and generation of radial
flow. The decoupled limit model is not self-consistent, and
shear viscosity is taken into account to smooth the structure.
A large shear viscosity case is analyzed, and a well-
suppressed perturbation profile is obtained. The structure is
affected by those near the boundary of the shear region
because of the strong radial coupling with the shear viscosity
and the strong boundary constraint. Only the limiting cases
of poloidal shock and shear viscosity dominant, respectively,
are considered here, and an intermediate case that the poloidal
shock and shear viscosity effect are comparable is left for a
future work. The intermediate case is what is expected to be
realized in tokamak experiments. Figures 1 and 2 indicate that
both the magnitude and the peak position of the density
perturbation depend strongly on the magnitude of µ.
Therefore, a measurement of the poloidal density profile can
be used to estimate µ. Even the large shear viscosity case
shows a little but finite poloidal variation, so a detailed
measurement of the poloidal density profile gives important
information on the structural formation mechanism.

Previous transport analyses based on flux surface
averaged quantities have shown good qualitative agreement
with experiments, and a clear shock structure has not been
observed yet in experiments. An effect of the poloidal
structure might be negligible as in the large shear viscosity
case. On the other hand in a transient phase in L-H transition

the shock is possible to affect to shorten the transition time
[11].

The poloidal shock structure arises from toroidicity.
Another cause of formation of a poloidal structure is a
divertor configuration. A potential hill near the divertor X-
point is observed in DIII-D [16 ]. This effect is also important
for poloidal structural formation mechanism and must be
taken into account.
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