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Abstract

A spectral analysis of the velocity distribution function in the slab ion temperature gradient (ITG) driven
turbulence is done by using high-resolution Eulerian kinetic simulation results. It is clarified how the entropy variable
associated with the fine-scale structure of the distribution function is produced by the turbulent heat transport in the
presence of the temperature gradient, transferred from macro to microscales in the velocity space through phase-
mixing processes, and dissipated by collisions. An interesting analogy between the entropy spectrum in the ITG
turbulence and the spectrum of a passive scalar quantity in a turbulent fluid is pointed out. The entropy spectral
function is analytically derived and confirmed by the simulation result. It is shown that the entropy spectrum obeys a
power law in the range that is free from instability sources and collisional dissipation.
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1. Introduction

Plasma turbulence and resultant anomalous transport
have long been a key issue in the magnetic fusion research
[1]. Complexity of the issue partly lies in the fact that, for
qualitative study of turbulence in high-temperature plasmas,
we should take account of kinetic characteristics and
accordingly treat not only real-space but also velocity-space
structures of the particle distribution function. Because of
large computer memory and time required for calculation of
the distribution function in such turbulent kinetic systems,
detailed investigations of its velocity-space structures in
turbulent states have not much been made so far compared
with those on the real-space structures of fluid variables. In
the present work, combining high-resolution Eulerian kinetic
simulation [2,3] with theoretical analysis, we elucidate the
velocity-space spectral structures in the slab ion temperature
gradient (ITG) driven turbulence [4,5] which causes
anomalous transport in high-temperature plasmas. This typical
example of plasma turbulence involves a turbulent E × B flow
and anomalous heat transport in the real space as well as
phase-mixing and collisional dissipation processes in the
velocity space.

This paper is organized as follows. A basic kinetic
equation for the slab ITG turbulence and geometrical
conditions are described in Sec. 2. The spectral analysis of
the distribution function is presented in Sec. 3. There,
analytically derived entropy spectral functions are compared
with results from numerical simulation of the slab ITG
turbulence. Finally, conclusions are given in Sec. 4.

2. Basic kinetic equation

As in the previous work on the collisionless ITG
turbulence [4], we consider a periodic two-dimensional slab
configuration with translational symmetry in the z-direction,
where the uniform magnetic field is set in the y-z plane such
that B = B(z̃ + θ ỹ) with θ  << 1. Assuming the fluctuation part
of the ion distribution function to be give by δfk(v||,v⊥) = f̃k(v||)
FM(v⊥), with the Maxwellian velocity distribution FM,
neglecting the parallel nonlinear term and taking a v⊥-integral
of the ion gyrokinetic equation yield the following equation
in the wave number space k = (kx,ky),
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where we also have assumed constant density and temperature
gradients of the background ions in the x-direction with much
larger scale-lengths [Ln ≡ –d(ln n)/dx and LT ≡ –d(ln Ti)/dx]
than the fluctuation wave lengths. The electric potential φk is
related to Ψk by Ψk = e–k2/2φk with k2 = kx

2 + ky
2. In addition to

eq. (1), the electron Boltzmann relation and the quasineutrality
condition, which are not written here, are used to give a
closed system of governing equations for the slab ITG
turbulence [2,4,5]. In eq. (1), we have used the following
normalization; x = x′/ρi, y = y′/ρi, v|| = v||′/vti, t = t′vti/Ln, f̃ =
f̃ ′Lnvti/ρin0, and φ = eφ′Ln/Tiρi, where vti, ρi (= vti/Ωi), Ωi, n0,
e, and Ti are the ion thermal velocity, the ion thermal gyro-
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radius, the ion cyclotron frequency, the background plasma
density, the elementary charge, and the background ion
temperature (Ti = mivti

2; mi means the ion mass), respectively.
Prime means a dimensional quantity. Θ is defined as Θ = θ
Ln/ρi. ηi is given by ηi = Ln/LT.

The parallel advection term on the left hand side of eq.
(1) contributes to generation of fine-scale fluctuations of f̃k in
the velocity space, that is, the phase mixing. The instability
drive is contained in the first group of terms on the right-
hand side of eq. (1). The last term on the right-hand side
denotes the ion-ion collision term for which we employ the
Lenard-Bernstein model collision operator, Ci( f̃k) = ν∂v|| [∂v||

+ v||] f̃k (v||), with the collision frequency ν normalized by vti/
Ln.

3. Spectral analysis

In order to investigate the velocity-space structure of the
distribution function, we expand f̃k as
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where Hn(v||) is the Hermite polynomial of order n. In terms
of the coefficient f̂ k,n in the Hermite-polynomial expansion,
eq. (1) is rewritten by
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where δn,m = 1 for n = m and 0 for n ≠ m. The phase mixing
process associated with the parallel streaming of particles are
now represented by the interaction to the adjacent-order
[(n – 1) and (n + 1)] terms in the Hermite-polynomial
expansion of the perturbed distribution function with the same
wave number vector k as shown in the second and third terms
on the left-hand side of eq. (3). On the other hand, the E × B
convection, which is given by the last term on the left-hand
side, involves the distribution functions of only the same order
n but with different wave number vectors k″. The linear
source terms proportional to Ψk on the right-hand side
disappear for n ≥ 3, which is the reason why the Hermite-
polynomial expansion is employed here. A clear cutoff of the
source like this never occurs if we use the Fourier expansion
in terms of exp(ilv||) (–∞ < l < ∞) as basis functions.

We define the entropy variable δS by [4-8]
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where δSk,n ≡ —12 n! 〈| f̂ k,n|2〉 and δSn ≡ ΣkδSk,n represent the
entropy spectral functions in the (k,n)-space and in the n-

space, respectively, and 〈…〉 denotes the ensemble average.
Using eq. (1), we obtain

d

dt
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and δn,m = 1 (n = m), 0 (n ≠ m). Here, Qi denotes the turbulent
ion heat flux downward in the temperature gradient on the
right-hand side of eq. (5), ηiQi represents the entropy
production supplied at n = 2 while –2νnδSn is the collisional
entropy dissipation term. We also find that Jn–1/2 (Jn+1/2)
represents the entropy transfer from the (n – 1)th (nth) to the
nth [(n + 1)th] Hermite-polynomial portion.

Now, let us investigate the entropy spectrum δSn in the
steady turbulence, where the left-hand side of eq. (5) vanishes.
Considering small scales in the velocity space (n > 2), we
treat n as a continuous variable and use the approximation
Jn+1/2 – Jn–1/2 ~– dJn/dn to obtain dJn/dn = –2νnδSn. Assuming
that the n-dependence of the phase of f̂k,n  is determined
mainly by the phase mixing of the ballistic modes, we can
put f̂k,n–1/2 f̂ *

k,n–1/2 ~– i(ky/|ky|) | f̂k,n|2. Then, using eqs. (4) and (6),
we have Jn/δSn ~– 2Θ √n

– 〈|ky|〉n, where the spectral average
〈…〉n ≡ (ΣkδSk,n…)/(ΣkδSk,n) ≡ (Σk〈| f̂k,n|2〉…)/(Σk〈| f̂k,n|2〉) are
defined. Using the relations shown above, we obtain

d

dt
n k S n S ny n n n( | |  .2 2 2Θ δ ν δ= − ≥for (9)

In order to derive the functional form of δSn, we still
need to specify the n-dependence of 〈|ky |〉n included in eq.
(9). For this purpose, we examine the role of E × B
convection term in eq. (3). Here, we point out the analogy of
our problem to the study by Batchelor on the spectrum of the
passive scalar for wave lengths smaller than the Kolmogorov
scale in the large Prandtl number case [9]. Like the turbulent
passive scalar in small scales, f̂k,n for large n is considered to
vary so rapidly that E × B flow acting on f̂k,n is regarded as a
steady one which is statistically independent of f̂k,n. Then, the
strain of the steady flow causes the exponential growth of the
wave number of the convected variable, k ∝ eγ t [9]. Under
the phase-mixing process described by the second term in the
left-hand side of eq. (1), a factor in the form of exp(–iv||Θky/γ)
is produced in the velocity distribution function. In the
Hermite-polynomial expansion of this factor, components of
order n ~– (Θky/γ )2 are dominant. Thus, we have the relation,
Θ|ky| ~– γ √n

–
. Substituting this into eq. (9) and integrating it

with respect to n yield the entropy spectrum δSn,
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where σ ≡ 2ν∫0

∞
nδSndn ~– 2νΣn nδSn represents the collisional

entropy dissipation rate. In the steady state, the entropy
dissipation and production rates balance with other so that σ
= ηiQi. We find from eq. (10) that, in the range where neither
entropy production nor collisional dissipation occurs (2 < n
<< γ /ν), we expect the power-law of δSn ∝ 1/n with Jn = σ =
const. which is analogous to the passive scalar spectrum and
its power transfer in the viscous-convective subrange.

In the analytical treatment for derivation of eq. (10),
〈|ky |〉n ∝ √n

–
 increases infinitely with n. However, in numerical

simulations, there exists the upper limit of |k|. Even if the
potential amplitude is sufficiently damped at the maximum
wave number in the simulation, still fk,n for large |k| and large
n is continuously produced by the combination of the E × B
convection and the phase mixing process. Therefore,
saturation of 〈|ky |〉n with increasing n is anticipated due to the
upper limit of |k|. In this case, taking Θ 〈|ky |〉n = γM as
independent of n and using eqs. (4) and (6), we obtain Jn/δSn
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where σ is the same as given after eq. (10).
Now, let us compare the above analytical results with

numerical simulation results. In our simulation, we consider
the case with no zonal flow component (ky = 0) [2] and use
parameters (ηi, Θ) = (10, 2.5). In Fig. 1, the spectrum-
averaged wave number 〈|ky |〉n is plotted as a function of n
for (kmax,ν) = (6.4, 2 × 10–3) and for (kmax,ν) = (12.8, 1.25 ×
10–4). We find that 〈|ky |〉n grows nearly in proportional to √n

–

for smaller values of n (> 2), which agrees with the estimate
of Θ 〈|ky |〉n ~– γ √n

–
 used for derivation of eq. (10). Also,

saturation of 〈|ky |〉n for larger n due to the upper limit kmax is
seen in Fig. 1. The saturation starts at lower n for smaller
kmax.

From the simulation result with kmax = 6.4 (12.8) in Fig.
1, we obtain γ ~– 0.75 (0.5) and σ ~– 63 (36) for the spectral
function in eq. (10) while, for that in eq. (11), we put γ M =
7.5 (15). The entropy spectra δSn obtained by the same
simulation as in Fig. 1 are compared with those given by the
combination of eqs. (10) and (11) in Fig. 2, where we use
eq. (10) for n < 3 × 102 (103) and eq. (11) for n > 3 × 102

(103) in the case of kmax = 6.4 (12.8). In the dissipation range
with large values of n, the spectrum found in the simulation
is well fitted by eq. (11). Since the constant factor in eq. (10)
is determined by the constraint 2ν ∫ nδSndn = σ with σ
evaluated from the simulation result, the spectrum δSn for
lower n evaluated from eq. (10) becomes slightly smaller than
that in the simulation in order to satisfy the constraint
because, for higher n, the latter spectrum is smaller than the
former due to the effect of finite kmax. Thus, the entropy
spectrum observed by the slab ITG turbulence simulation can
be well explained by combining the analytical expressions in

eqs. (10) and (11). If we can employ an sufficiently high value
of kmax, the simulation will reproduce the spectrum δSn in
eq. (10) for the whole range of n > 2.

4. Conclusions

In this paper, the spectral analysis of the velocity
distribution function in the slab ITG turbulence is made by
using the Hermite-polynomial expansion with the Maxwellian
weight function. The entropy variable produced at n = 2 by
the turbulent ion heat flux downward in the temperature
gradient is transfered toward the high-n side by the phase
mixing process combined with the turbulent E × B flow and
is dissipated by collisions, where n denotes the order of the

Fig. 2 Entropy spectra δSn (solid and dashed lines) obtained
by the same simulation as in Fig. 1. For comparison,
dotted and dot-dashed lines represent the combination
of eqs. (10) and (11). Here, eq. (10) is used for n < 3 ×
102 (103) and eq. (11) for n > 3 × 102 (103) in the case of
kmax = 6.4 (12.8).

Fig. 1 Spectrum-averaged wave number 〈|ky |〉n for (kmax, ν) =
(6.4, 2 × 10–3) and (kmax, ν) = (12.8, 1.25 × 10–4). Upper
and lower dotted straight lines represent 〈|ky |〉n = 0.3
√n– and 0.2√n– , respectively.
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Hermite-polynomial expansion. Finding analogy to the
turbulent convection of the passive scalar for wave lengths
smaller than the Kolmogorov scale in the large Prandtl
number case, the entropy spectrum δSn is analytically derived
and shown to well describe the numerical simulation results
on how δSn (n > 2) depends on n, ν (the collision frequency),
and kmax (the maximum wave number used in the simulation).
In the subrange of the n-space where neither entropy
production nor collisional dissipation occurs, we obtain the
power-law scaling δSn ∝ 1/n, which also resembles the form
of the passive-scalar power spectrum ∝ 1/k in the viscous-
convective wave-number subrange derived by Batchelor [9].
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