
©2004 by The Japan Society of Plasma
Science and Nuclear Fusion Research

J. Plasma Fusion Res. SERIES, Vol. 6 (2004) 000–000

1

Effect of Feedback Coil and Plasma Rotation on Nonlinear

Resistive Wall Mode in a Cylindrical Tokamak
SATO Masahiko and NAKAJIMA Noriyoshi

National Institute for Fusion Science, Toki 509-5292, Japan
(Received: 10 December 2003 / Accepted: 10 May 2004)

Abstract

Nonlinear behavior of resistive wall mode (RWM) is investigated using reduced MHD equations. For fixed plasma
rotation velocity, The linear growth rate of RWM with poloidal rotation increases as the resistive wall become close
to the plasma surface. Thus, the poloidal rotation velocity required to stabilize the linear RWM increases. However,
when the poloidal rotation frequency is sufficiently large, the nonlinear saturation amplitudes are small. Also feedback
stabilization of the RWM without the poloidal rotation has been studied. The linear growth rate decreases due to the
external magnetic field produced by the feedback coil. However, low saturation level can not be obtained.
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1. Introduction

Magnetohydrodynamic (MHD) stability of magnetically
confined plasmas is crucial for obtaining improved
confinement suitable for a fusion reactor [1]. For obtaining
high beta plasmas, stabilization of dangerous ideal kink
modes is required in current carrying tokamaks [2]. The ideal
kink modes can be stabilized by a perfect conducting wall
placed sufficiently close to the plasma surface [3]. However,
when the wall has a finite conductivity, the mode can not be
stabilized completely, even if the wall is close to the plasma
surface [4]. In this situation, resistive wall modes (RWMs)
become unstable. The RWM grows slowly with a growth time
on the order of resistive decay time of magnetic field, τw, in a
wall. For a stationary tokamak sustained with a large
bootstrap current, such a slowly growing instability becomes
dangerous and it is important to stabilize RWMs. There are
several experimental results that the RWMs deteriorate
confinement in tokamaks [5-7]. For suppressing effects due
to RWMs feedback controls have been proposed [8,9].

It is noted that the linear RWMs can be stabilized by
plasma rotation [10-14]. From nonlinear simulations, M. Sato
et al. [15] showed that the magnetic perturbation due to the
RWM has a role to suppress the poloidal rotation through the
Maxwell stress and the resultant slowdown of plasma rotation
significantly affects stability of RWMs and their nonlinear
behavior. In this paper we studied nonlinear RWMs for the
case that resistive wall is close to the plasma surface. For such
a case, the destabilizing effect for linear RWMs due to plasma
rotation appears [4,14].

The rest of the paper is organized as follows. In Sec. 2,
the reduced MHD equations for low beta cylindrical plasmas

are introduced. Then our numerical model for studying
nonlinear RWMs are shown. Numerical schemes for solving
the reduced MHD equations are briefly mentioned. In Sec. 3,
results of nonlinear calculations of unstable RWMs are shown.
Finally, a summary is given in Sec. 4.

2. Numerical model

For low beta cylindrical tokamak plasmas, the well-
known reduced MHD equations were derived by Kadomtsev
and Pogutse, and Strauss [16,17]. These equations with
dimensionless variables are shown as
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in the cylindrical coordinates (r, θ , ζ ), where ψ is the
poloidal magnetic flux defined by B⊥ = – R

—a ∇ψ ×  eζ and φ is
the stream function defined by v⊥ = ∇φ ×  eζ, and ⊥ means
perpendicular to the toroidal direction. Here, r, θ and ζ are
radial, poloidal and toroidal coordinate, respectively. In eq.
(1), resistivity η is normalized to µ0a2/τhp, where τhp = R µ0ρ /
B0. Here the length of cylindrical plasma is 2π R, the plasma
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minor radius is a, the mass density is ρ, and the longitudinal
magnetic field is B0. In eq. (1), the electric field, Eζ, is chosen
to satisfy ηeqJeq = Eζ, where ηeq and Jeq are a resistivity and a
current density at an equilibrium state, respectively. In eq. (2),
viscosity is denoted by ν. The source term Sm is chosen to
satisfy ν∇⊥

2Ueq(r) + Sm = 0, where Ueq(r) is a vorticity at an
equilibrium state. It is noted that a poloidal rotation is
introduced through the vorticity Ueq(r). In eqs. (1) and (2),
time is normalized to τhp, length to a, ψ to B0a2, ψ to B0a2/τhp

and U to B0/τhp. Thus the velocity v⊥ is normalized with a/
τhp.

Resistivity is introduced artificially in the vacuum region
to use the pseudo-vacuum model [18,19]. For obtaining time
evolution of resistivity in eq. (1), the equation of time
evolution of electron temperature Te is solved:
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where the perpendicular thermal transport coefficient of
electron temperature is normalized to χ⊥ to a2/τhp. The
resistivity is assumed to be proportional to Te

–3/2. In the
numerical calculations χ⊥ = 10–8 are assumed. The source
term Q is chosen to satisfy χ⊥∇⊥

2Teq(r) + Q = 0, where Teq(r)
is a temperature at an equilibrium state.

The main plasma is located in the region r ≤ 1, the
resistive wall in the region rw ≤ r ≤ rw + dw, and the pseudo-
vacuum in the region 1 < r < rw = 1.1 and rw + dw < r < rc. It
is assumed that a perfect conducting wall is located at rc = 2.

In the region r > rw, the velocity is zero and the resistivity
is independent of time. However, the poloidal flux may
change in this region. Thus, the diffusion equation of
perturbed poloidal flux ψ̃
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t
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is solved.
The boundary conditions for the reduced MHD equations

solving φ̃ (r, θ, ζ, t), ψ̃ (r, θ, ζ, t) and T̃e(r, θ, ζ, t) are φ̃ (rw) =
T̃e(rw) = 0 at r = rw and ψ̃ (rc) = 0 at r = rc. At r = 0 standard
boundary conditions are employed.

The current profile at an equilibrium state is chosen as

J r J J r Jeq a b b( ) ( )( )= − − +1 12 12 (7)

for 0 ≤ r ≤ 1, and Jeq(r) = Jb << Ja for 1 < r < rc. The resistivity
profile is assumed to be proportional to 1/Jeq(r) for r < rw .
η(r = 0) and the resistivity in the pseudo-vacuum region ηv

are set to be η(r = 0) = 10–5 and ηv = 1, respectively.
Resistivity of the resistive wall ηw is assumed to be ηw =
10–4. The profiles of Jeq and ηeq are shown in Fig. 1. The
rational surface of q = 2 is located at r = rs ~– 1.08 in the
pseudo-vacuum region. When a perfect conducting wall is
located at r = 1.45, the ideal external kink modes are
stabilized perfectly.

Equations (1)–(5) are solved numerically for the
cylindrical plasma shown in Fig. 1. In our numerical code,
the radial derivates are replaced with standard difference
approximations. The derivatives with respect to poloidal angle
θ and the toroidal angle ζ are treated with Fourier-expansions.
We also assume single helicity for studying the (m,n) = (2,1)
mode destabilized at the q = 2 surface. The time advancement
is made with a predictor-corrector method.

3. Numerical results

Figure 2 shows dependence of linear growth rate of (m,n)
= (2,1) mode on the rigid poloidal rotation frequency ω = vθ/
r and the resistive wall position rw. Here vθ is a poloidal flow
velocity proportional to r. For ω ~ 0.2, the mode is stabilized
as the resistive wall is moved farther from the plasma, which
is consistent with the theoretical prediction. When poloidal
rotation is sufficiently large, the RWM is perfectly stabilized.

Figure 3 shows time evolution of magnetic energy, EM,
of (m,n) = (2,1) component for rw = 1.1 for various poloidal
rotation frequencies. Because of limitation of our numerical
code, we carried out simulations for EM ~< 0.01. When the
resistive wall is close to the plasma surface, the poloidal
rotation velocity required to stabilize the RWM becomes
larger. However, when the initial poloidal rotation velocity is
large, the amplitudes of the perturbed magnetic energy
saturate at a low level while the large poloidal rotation

Fig. 1 Profile of plasma current density Jeq and resistivity ηeq

at equilibrium state.
Fig. 2 Dependence of linear growth rate of (m,n) = (2,1) mode

on rigid poloidal rotation frequency.
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Fig. 3 Time evolution of magnetic energy of (m,n) = (2,1)
component for various poloidal rotation frequencies.
(a) ω = 0, (b) ω = 0.24, (c) ω = 0.25 and (d) ω = 0.26. (e)
and (f) are results with feedback coil. (e) α = 40 and (f) α
= 50.

Fig. 4 Time evolution of radial profile of poloidal rotation
velocity for rw = 1.1 and ω = 0.26.

Fig. 5 Radial profile of each term in eq. (9) for rw = 1.1 and  ω
= 0.26 at t = 3000. Here curve (a) denotes the first term
of right-hand side of eq. (9) corresponding to Reynolds
stress, curve (b) denotes the second term of RHS of eq.
(9) corresponding to Maxwell stress, curve (c) denotes
the third term of RHS of eq. (9) corresponding to
viscous damping, and curve (d) denotes left-hand side
of eq. (9).
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remains such as the case for ω = 0.26.
Figure 4 shows time evolution of profile of poloidal

velocity for rw = 1.1 and ω = 0.26. There is a slowdown of
poloidal rotation velocity at the plasma surface. The poloidal
rotation velocity does not become zero at the plasma surface
in the nonlinear regime. Thus, there is not nonlinear
destabilization, which is seen in [15], due to the reduction of
the poloidal rotation for t ~< 5000.

The time evolution of averaged poloidal rotation velocity
〈vθ〉 is described by
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where 〈 f 〉 = ∫0

2π ∫0

2π
f dθ dζ/4π2 and Ũ0 is (m,n) = (0,0)

component of perturbed vorticity. Figure 5 shows that radial
profile of each term in eq. (9) for rw = 1.1, ω = 0.26 at t =
3000. As shown Fig. 5, the poloidal rotation decreases due to
Maxwell stress similar to the case for η0/ηv = 102 [15].
However, since the Reynolds stress is comparable to the
Maxwell stress, a damping force is small, and then the
reduction of poloidal rotation is small. Since the poloidal
rotation continues to decrease as shown in Fig. 4, it seems
that the RWM will grow again when the poloidal rotation
becomes smaller than a critical level. If the poloidal rotation
does not decrease by controlling the source term Sm in eq.
(2), the saturated amplitudes of the RWM may keep at the
low level.

Finally, effect of feed back coil on nonlinear RWM
without rotation is studied. For modeling of feed back coil,
Ef is added in eq. (6) for (m,n) = (2,1) component:
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where ψ2,1 is (m,n) = (2,1) component of ψ. Equation (9) is
solved in the pseudo-vacuum region. Here, g(r) is chosen as
g(r) = 1 for 1.15 ≤ r ≤ 1.17 and g(r) = 0 for other region. It
is also assumed that Ef = αψw, where ψw is the amplitude of
(m,n) = (2,1) component of ψ at the resistive wall. Thus,
outside of the resistive wall, there is the external helical
current, which is proportional to the amplitude of poloidal
flux. When α is large, the linear growth rate become small as
shown in Fig. 3. However, low saturation level can not be
obtained.

4. Summary

Nonlinear behavior of the RWM of (m,n) = (2,1) mode
has been investigated with the reduced MHD model. There is
an initial increase in the linear growth rate of RWMs with
the poloidal rotation. However, when the poloidal rotation
frequency is sufficiently large, the linear growth rate becomes
small and the nonlinear saturation amplitudes decrease. The
external magnetic field produced by the feedback coil can
reduce the linear growth rates of the RWMs. However,
nonlinear saturated amplitudes with the feedback stabilization
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are not small when the poloidal rotation dose not exist.
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