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Abstract

The chaotic orbits in the Rossler system are controlled into a periodic cycle by two methods; the delayed feedback
controlling method which continues to control chaos by self-controlling feedback, and a control system including on-
line trained neural network controller. It is found that (1) stabilization of chaotic orbits by the former method depends
on the initial conditions and the gain parameters and that (2) the linear neural controller fails to control chaotic orbits
in the Rossler system and choice of the threshold function (nonlinear function) is found to be essential for the second
method.
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1. Introduction

Chaotic phenomena are frequently observed in plasma
discharges and in the fundamental plasma experiments [1].
Recent researches extend not only to identify but also to
control chaos itself [2]. In fusion plasmas, the control of
plasma turbulence is a critical issue to attain the self-ignition
conditions. Therefore, techniques of controlling chaos might
be useful even for fusion plasmas. To establish controlling
method of plasma turbulence, we will investigate the
controlling of chaos as the first step. During the initial phase
of developing turbulence, the pichfork bifurcation is
sometimes observed in experiments, which is described by a
simple model with a few degrees of freedom [3]. Therefore,
we expect these controlling methods are usufull to control
chaos in the initial phase of developing turbulence.

The original controlling method of chaos called OGY
method is developed by Ott, Grebogi and Yorke. It utilizes
the existence of UFP (unstable fixed point) embedded within
the chaotic attractor [4]. The chaotic orbit is stabilized by
applying small perturbations into the system. However, this
method requires the knowledge of the location of UFP so that
the location should be tracked in advance by the linear
prediction. Later, Pyragas proposed the delayed feedback
controlling method which does not require the knowledge of
the location of UFP or unstable periodic orbit (UPO) by
modifying the OGY method [5]. The alternative method of
controlling chaos is given by aplication of the neural network
controller (NNC). On-line trained linear neural controller is
proposed by Konishi and Kokame, and is applied to control
the chaotic orbit in the two dimensional map system such as
an Henon map [6].

In this paper, both methods are tested to the Rossler
system to check these methods are applicable to not only a
map system but also to coupled ordinary differential equations
with a few degrees of freedom. Performance of these control
methods is compared with each other. It is found that the
control of chaos by the Pyragas method is strongly affected
by the gain of perturbation and is sensitive to the initial
conditions for the period three cycle. We also apply the NNC
to the Rossler system. It is found that the original linear NNC
fails to control the Rossler system and is only available for a
map system. It is concluded that the nonlinear threshold
function is essential to control a chaotic orbit in the Rossler
system and that the NNC with the hyperbolic tangent function
shows the best performance. This paper is organized as
follows. In Sec. 2, the method of delayed feedback control is
applied to the Rossler system, and the sensitivity of
parameters on the controlling chaos is examined. In Sec. 3,
the NNC is applied to the Rossler system. The dependence
of the threshold function is examined. The chaotic orbit is
controlled by using the NNC with the hyperbolic tangent
function as the threshold function. In Sec. 4, we summarize
the results.

2. Chaos control by delayed feedback

method

The Rossler system with a perturbation F(t) is given by
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where y (t – τ ) is delayed output signal and k is the gain of
perturbation. This system has a chaotic attractor. Figure 1
shows the x – y phase portrait of the Rossler system without
perturbation (k = 0), where the chaotic attractor is clearly
seen.

The delayed time τ corresponds to the period of the UPO
or UFP, when F(t) = 0, i.e., D2(t) = [(y (t) – y (t – τ )]2 = 0.
From numerical results with different τ, we will estimate a
value of τ which gives the local minimum of D2(t) for k =
0.2. Figure 2 shows the dependence of the time averaged
perturbation 〈D2(t)〉 on τ for k = 0.2. The time average is
performed during the time interval t = 150 – 300. 〈D2(t)〉 is
calculated for each value of τ with different initial conditions
such as x0 = y0 = z0 = 0.5, 1.0, 1.5,…, 10 and the
corresponding 20 values of 〈D2(t)〉 for each τ are shown. It is

found that τ = 5.90, 11.75, 17.50 correspond to the period-
one, two, three, respectively. Other local minimum correspond
to the UFPs.

Next, we numerically find k that gives the local minimum
values of D2(t) while fixing the period, τ obtained in Fig. 2.
Figure 3 shows the dependence of 〈D2(t)〉 on k in the cases
with τ = 5.90 (thick line), τ = 11.75 (dotted line) and τ =
17.50 (dotted dashed line). It is seen that k = 0.18, k = 0.12
and k = 0.06 correspons to the local minimum for period one,
two and three cycles, respectively. Figure 4 shows period-one
cycle of the Rossler system. Two cases with (τ = 5.90, k =
0.18) and (τ = 5.90, k = 0.8) are shown for the initial
condition of x0 = y0 = z0 = 5.5. The thick line corresponds to
the case with k = 0.18 and the dotted line to the case with  =
0.8. It is shown that the choice of k is important to stabilize
UPO.

We investigate the sensitivity of controlling chaos on
initial conditions for each period τ with an optimized value
of k. It is found that the control of chaos on the period-one
cycle (τ = 5.90) or two cycle (τ = 11.75) does not depend on
the initial condition. However, the control of chaos on the

Fig. 2 Dependence of 〈D2(t)〉 on τ.Fig. 1 Chaotic attractor of the Rossler system.
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Fig. 4 Period-one cycle of the Rossler system for τ =5.9 and
k = 0.18 and 0.8.

Fig. 3 Dependence of D2(t) on k.
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period three cycle (τ = 17.5) depends on the choice of the
initial condition.

Figure 5 shows the x – y phase portrait of the Rossler
system with τ = 11.75 for t >150. It is successfully controlled
to the period-two cycle. Figure 6 shows the dependence of
the power spectrum on the frequency with/without control for
τ = 11.75. The peak is observed at f = 0.085 for the case with
control, which implies period-two cycle ( f = 1/τ). It should
be mentioned that the chaotic orbits of the Rossler system
also converge to UFPs, which correspond to τ = 3.30 and τ =
9.30. In these cases, the value of k weakly affects the
stabilization of UFP compared with stabilization of UPO.

3. Chaos control by neural controller

In this section, we use neural network controller to
control the chaotic system, i.e., the Rossler system. Figure 7
shows the block diagram of NNC. Here the NNC consists of
two layers such as input and output layers [5]. The following
chaotic system is considered:

X F X U( ) [ ( )] ( ),t t t+ = +1 (2)

where X(t) is the state vector, F denotes chaotic system and
U(t) is the control signal. When the orbits X(t) and X(t – τ)
of the chaotic system without control satisfy

|| ( ) – ( – ) ||X Xt t τ ε< (3)

the watcher passes a control signal from the NNC to the
chaotic system, and then the weights of connection from the
input neuron to output neuron in the NNC are updated by
back propagation method. Initial values of the weights are
determined within the range of –0.01 to 0.01 by a random
number. ε is assumed to be a small positive value. The NNC
is given by
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where j is the number of input neuron, i, the number of output
neuron and k is the number of times in which the NNC is
trained (i.e., the number of times the watcher operates). Wij is
the weight of output neuron, and Oi(tk) is the signal which
goes into neuron of the output layer through the weight from
ith neuron of the input layer, and θi(k) is the bias of the ith
neuron of the output layer. The weights and the biases are
updated by using
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η is the learning rate and the error is defined by

E k k E k k E kC C U U( ) ( ) ( ),= + (7)

with
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We apply the NNC to the Rossler system:
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In this case, the NNC consists of three input neurons and three
output neurons. The three cases with different threshold
functions are investigated: (1) linear function f (x) = x and

Fig. 6 Dependence of power spectrum on frequency.Fig. 5 the x-y phase portrait of the Rossler system controled
by adding a perturbation.

-10

-5

0

5

10

-10 -5 0 5 10 15

y

x

0.01

0.1

1

10

100

1000

104

0 0.1 0.2 0.3 0.4 0.5

Spectrum

Frequency

uncontrol

control

265



Saito T. et al., Control of Chaos by Linear and Nonlinear Feedback Methods

4

Fig. 8 Period-one cycle of the Rossler system with NNC.

Fig. 7 Block diagram of the control system.

other parameters are ε = 1.0, η = 0.08, kC = 3.0 and kU = 1.0,
(2) the sigmoid function f (x) = 1

1 + e –x , (3) the hyperbolic
tangent function f (x) = 1 – e –x

1 + e –x  for period-one, two and three.
It is found that the case (1) fails for all cases; the case (2)
fails in period-two and three cases for kC = 3.0, kU = 1.0.
However, the case (2) successfully controls period-three for
kU = 4.2. The case (3) works for all cases without changing
parameters kC and kU. These results are shown in Figs. 8 and
9 for period-one and two cases. The dotted line corresponds
to the case with the linear function and the thick line to the
case with the hyperbolic tangent function. It is concluded the
hyperbolic tangent function is the best candidate as the

threshold function of NNC for controlling the Rossler system.
The numbers of updating weights in the NNC is a good
indicator whether the NNC successfully controls the chaos,
or not.

Finally, we extend the NNC with three layers and
examine the effect of numbers of neurons in hidden layer on
controlling chaos. However, no advantage is found compared
with the NNC with two layers. Therefore we conclude that
the NNC with two layers and hyperbolic tangent function as
the threshold function shows the best peroformance to control
the Rossler system.

4. Summary and discussion

The Pyragas method and the on-line trained NNC are
tested for the Rossler system. It is found that the UPO of the
Rossler system is stabilized by the delayed feedback
controlling method, however, the controllability depends on
the choice of the initial condition and the gain of perturbation.
The NNC with linear threshold function works well for the
control of the chaos in map systems [6], however, it fails in
the application to the Rossler system as is shown in this paper.
The NNC is improved by changing the threshold function
such as the sigmoid function and hyperbolic tangent function.
We find that the NNC with hyperbolic tangent function shows
the best performace to control the Rossler system. We also
examine the NNC with three layers, however, no advantage
is found in comparison with the NNC with two layers for the
Rossler system. Once we find the suitable value of k, then
the delayed feedback controlling method is faster than the
NNC with hyperbolic tangent function, although it is not
always possible for the general case.

Fully developed plasma turbulence has a large degree of
freedom, therefore, simple neural network system will not
work. As a future work, we will apply 3 layers neural network
controller to plasma turbulence.
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Fig. 9 Period-two cycle of the Rossler system with NNC.
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