
©2004 by The Japan Society of Plasma
Science and Nuclear Fusion Research

J. Plasma Fusion Res. SERIES, Vol. 6 (2004) 000–000

1

Turbulence Spectrum and Transport Scaling
VLAD Madalina, SPINEANU Florin, MISGUICH Jacques1, REUSS Jean-Daniel1, BALESCU Radu2,

ITOH Kimitaka3 and ITOH Sanae4

National Institute for Laser, Plasma and Radiation Physics,
Association Euratom-MEC, P.O.Box MG-36, Magurele, Bucharest, Romania

1Association Euratom-CEA sur la Fusion, CEA-Cadarache, 13108 Saint-Paul-Lez-Durance, France
2Association Euratom-Etat Belge sur la Fusion, Université Libre de Bruxelles, Belgium

3National Institute for Fusion Science, Toki 509-5292, Japan
4Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan

(Received: 10 December 2003 / Accepted: 11 February 2004)

Abstract

The effect of the shape of the spectrum of an electrostatic turbulence on the scaling of the diffusion coefficient is
studied using the decorrelation trajectory method. We show that a strong influence appears at large Kubo numbers
due to trajectory trapping.
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1. Introduction

The amplitudes and spectra of plasma turbulence are
measured in a very large number of experiments on tokamak
devices. These experimental data can be used in a test particle
approach to determine the statistical properties of the
trajectories and in particular the transport coefficients. For
slowly varying or large amplitude turbulence a process of
dynamical trapping of the trajectories around the extrema of
the stochastic potential appears and strongly influences the
transport. Important progresses in the study of this nonlinear
process were recently obtained. New statistical methods were
developed [1,2] that permitted to determine the asymptotic
diffusion coefficient and also the Lagrangian correlation of
particle velocity and the time dependent diffusion coefficient.
It was shown that the trapping process determines the
decrease of the diffusion coefficient and the change of its
scaling in the parameters of the stochastic field.

The aim of the present study is to determine the effect
of the turbulence spectrum on the diffusion coefficient. It is
already known that in the quasilinear case the shape of the
spectrum does not influence the asymptotic diffusion
coefficient D, which is determined only by the average wave
length and frequency. We show that in a turbulence with slow
time variation or large amplitude the shape of the spectrum
has a strong influence on the diffusion coefficient. This is a
nonlinear effect produced by trajectory trapping.

2. The model and the statistical method

We consider a constant confining magnetic field directed
along z axis B0 = B0ez (slab geometry) and an electrostatic

turbulence represented by an electrostatic potential φe(x, t),
where x ≡ (x1,x2) are the Cartesian coordinates in the plane
perpendicular to B0. The test particle approach of the turbulent
transport relies on the following Langevin equation:
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where x(t) represents the trajectory of the particle guiding
center. The velocity v(x,z,t) is the E × B drift

v x x e( ) ( ), ≡ −∇ , ×t t zφ (2)

where ∇ is the gradient in the (x1,x2) plane and φ(x,t) =
φe(x,t)/B0 is the electrostatic potential normalized with B0. The
electrostatic potential φ(x,t) is considered to be a stationary
and homogeneous Gaussian stochastic field, with zero
average. Such a stochastic field is completely determined by
the two-point Eulerian correlation function (EC), E(x,t) or
equivalently by the spectrum S(k,ω). These two quantities are
related by the Fourier transform
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The EC of the stochastic potential is defined by

E t t ′ t ′ t( ) ( ) ( )x x′ x′ x, ≡ , + , + .φ φ (4)

The average 〈…〉 is the statistical average over the realizations
of φ(x,t), as is usually considered in theoretical studies
although it is actually experimentally obtained as a space and
time average over x′ and t ′ of the measured potential.
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The statistical properties of the velocity components are
completely determined by those of the potential; they are
stationary and homogeneous Gaussian stochastic fields like
φ(x,t). The two-point Eulerian correlations of the velocity
components, Eij(x,t) ≡ 〈vi(x′,t′)vj(x′ + x′, t′ + t 〉 , are

E t
E t
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( )
( )

x
x, = − ∂ ,

∂ ∂
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(5)

where ε12 = –ε21 = 1, ε11 = ε22 = 0. The EC of the velocity (5)
evidences three parameters that characterize the (isotropic)
stochastic velocity field: the amplitude V E= ,11 0 0( ) , the
correlation time τc and the correlation length λc, which are
the characteristic decay time and distance of this function.
These three parameters combine in a dimensionless Kubo
number

K
V c

c

c

fl

= =τ
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τ
τ (6)

which is the ratio of τc to the average time of flight of the
particles over the correlation length, τf l = λc/V.

Starting from this statistical description of the stochastic
potential, we will determine the Lagrangian velocity
correlation (LVC), defined by:

L t v v t tij i j( ) ( ) ( )≡ ,[ ] ,[ ] .x x0 0 (7)

The mean square displacement and the running diffusion
coefficient are determined by this function:
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provided that the process is stationary.
For small Kubo numbers (quasilinear regime)

corresponding to fast varying turbulence such that τc << τ f l,
the results are well established: the diffusion coefficient does
not depend on the shape of the correlation and it is Dql =
(λc

2/τc)K2. For K > 1 (τc > τ f l) the time variation of the
stochastic potential is slow and the trajectories approximately
follow the contour lines of φ (x,t). This produces a trapping
effect: the trajectories are confined for long periods in small
regions. A typical trajectory shows an alternation of large
displacements and trapping events. The latter appear when the
particles are close to the maxima or minima of the potential
and consist of trajectory winding on almost closed small size
paths. The large displacements are produced when the
trajectories are at small absolute values of the potential. The
most important effect of trajectory trapping consists of
decreasing the diffusion coefficient and of changing its
dependence on the Kubo number from the Bohm scaling [DB

~ (λc
2/τc)K] to a trapping scaling [Dtr ~ (λc

2/τc)Kγ ] with γ < 1.
Simple heuristic arguments can be used to show that the value
of γ has to be in the range [0,1]. The lower limit γ = 0
corresponds to total trapping and the upper limit γ = 1
correspond to the absence of trapping.

The first estimation of γ is based on an analogy with the

percolation in stochastic landscapes [3] and yields γ = 0.7.
This value appears as a critical exponent valid for any EC of
the potential that decays fast enough when x → ∞. We show
here that the shape of the EC can strongly influence the
diffusion and in particular the value of the exponent γ . We
use a new statistical approach, the decorrelation trajectory
method, which is a semi-analytical approach developed in [1]
and generalized to more complicated systems. In a recent
work [2] the results of this method concerning the LVC were
validated by developing a more accurate approach.

The main idea in this method is to study the Langevin
equation (1) in subensembles (S) of realizations of the
stochastic field, which are determined by given values of the
potential and of the velocity in the starting point of the
trajectories. The potential and the velocity considered in such
a subensemble are Gaussian but non-stationary and non-
homogeneous, with space and time dependent averages. This
subensemble average Eulerian velocity determines an average
motion (the decorrelation trajectory) which is estimated by
neglecting the fluctuations of the trajectories around the
average trajectory. This approximation is analyzed in [1] and
[2] where it is shown that it has the important property of
maintaining the invariance of the average Lagrangian potential
in the case of static turbulence. The trapping process is
essentially related with this invariance property of the
evolution equation (1). The decorrelation trajectory method
eventually yields a set of trajectories with a weighting factor
for each one. It shows that the statistical properties of the
complicated stochastic trajectories can be determined by
performing averages over these very simple and smooth
trajectories. They are determined from equations of motion
that have the same Hamiltonian structure as Eq. (1) but with
a simple Hamiltonian function determined by the EC of the
potential.

A fast and precise code for determining the time
dependent diffusion coefficient for given EC of the stochastic
potential was developed [2]. It can be used as a tool in the
analysis of the experimental data.

3. Results

We consider the following model for the Eulerian
correlation of the potential
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where c0, c1, c2 and α are parameters. This correlation is
normalized such that the amplitude of the velocity fluctuations
V 2 = –E11(0) = 1, which determines one of parameters, c2 =
(1 – c1/c0)/2α. This model of the EC permits to consider
several typical types of correlations. The first term is a
localized space-function while the second is an extended
function with algebraic behavior at large distance. The
variation of the parameter c1 between c0 and 0 determines a
continuous change of the shape of this EC from the pure
Gaussian (at c1 = c0), to a Gaussian with a tail, then to an
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algebraic function with a perturbation around zero, which
decays and disappear at c1 = 0. The parameter α determines
the rate of decay of the EC. Its domain is α > –1 and it
defines two types of EC: short-range correlations for α > 0
and long-range correlations for –1 < α < 0. In the first case
the EC decays to zero at large distances and in the second
case the EC goes to minus infinity. This is possible because
actually the Eulerian correlation of the velocity has physical
significance and this correlation decays to zero in both cases.
In the first case the EC of the velocity is positive around zero
but at larger distances it has a region with negative values.
This shows that the stochastic potential is characterized by
finite size contour lines. In the second case the EC of the
velocity is everywhere positive and decays monotonously to
zero. This corresponds to a potential with statistically
important open contour lines.

The effect of trapping is represented by the function F(K)
= D(K)/DB, which appears in the solution obtained with the
decorrelation trajectory method [1] and is the asymptotic
diffusion coefficient normalized with the Bohm diffusion
coefficient. This function obtained for EC’s (10) with different
values of c1 is plotted in Fig. 1 as a function of K. One can
see that the scaling of this function is of power law type, F ~
1/Kβ, when the EC contains only one of the two terms. The
exponents obtained for these two cases are different: β = 0.96
for the Gaussian and β = 0.4 for the algebraic EC with α = 1.
When the two terms in the EC (10) are present the scaling is
more complicated and depends on the value of c1. At very
large K an exponent close to β = 0.4 can be observed while
at K of the order 10 the exponent is closer to β = 0.96. A
large transition appears between these values. The shape of
the EC also influences the constant that multiplies the K
dependent factor (significative distances appears between the
curves). In the quasilinear regime K < 1, the same result is
obtained for all cases which shows that the shape of the EC
does not influence the diffusion coefficient.

The function F(K) is represented in Fig. 2 for different
values of the parameter α in the EC (10) and for c1 = 0
(without the Gaussian term). One can see that the decay rate
of the EC with the distance strongly influences the diffusion
coefficient. The function scales as F(K) ~ 1/Kβ and β increases
when α increases. The trapping is stronger when the EC
decays rapidly (for large α) and as α increases the function
F(K) tends to the curve obtained for the Gaussian EC (dashed
line). The diffusion coefficient obtained for the Gaussian EC
is D ~ λc

2/τcK 0.04, thus it practically represents the limit of
total trapping Dt ~ λc

2/τc. For negative values of α, β is small
and it goes to zero when α → –1. In this limit F(K) saturates
at K > 1 which shows that the trapping is not present. Thus
the Bohm scaling of the diffusion coefficient appears for
stochastic potentials with long-range correlations.

The exponent γ of the scaling of the diffusion coefficient
(D ~ λc

2/τcKγ ) is obtained from β as γ = 1 – β. Its dependence
on α, the decay rate of the EC, is presented in Fig. 3. We
have thus obtained a continuous variation of γ with α, from
the value γ ≅ 1 for –1 < α < 0 to an asymptotic value which

Fig. 3 The exponent γ in the scaling law of the diffusion
coefficient obtained for an algebraic EC [c1 = 0 in Eq.
(10)] as a function of α.

Fig. 1 The normalized diffusion coefficient F(K) = D(K)/DB

obtained for the EC (10) with (c1,c2) having the values
(0, 0.5), (0.2, 0.4), (0.4, 0.3), (0.6, 0.2), (0.8, 0.1), (1, 0),
from the upper to the lower curve; α =1 and c0 = 1.

Fig. 2 The normalized diffusion coefficient obtained for an
algebraic EC [c1 = 0 in Eq. (10)] with different values of
α. Dashed line corresponds to Gaussian EC.
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is γ = 0. At negative value of α the trapping is practically
absent and the transport is of Bohm type and when the EC is
localized (α → ∞) the trapping is total.

4. Conclusions

We have examined the effect of the shape of the Eulerian
correlation on the scaling law of the diffusion coefficient. We
have obtained analytical expressions for the time dependent
diffusion coefficient corresponding to given Eulerian
correlation of the stochastic potential, using the decorrelation
trajectory method. We have shown that in the nonlinear
regime K > 1, the scaling law of the diffusion coefficient
depends on the shape of the EC and not only on the global
parameters of the EC that define the Kubo number. A strong
influence has the space-dependence of the EC at large
distances, i.e. the small k components of the spectrum. This
effect is determined by the complicated process of dynamic
trajectory trapping in the structure of the stochastic field. We

have obtained in the case of Gaussian and algebraic EC’s
power law scalings in K for the diffusion coefficients. For the
latter case, we have determined the exponent γ of the diffusion
coefficient as function of the exponent α which describes the
EC of the potential, Eq. (10). It is not a fixed value as in the
estimation based on percolation theory [3] but a continuous
function that decays from 1 to 0. For more complicated EC
of the stochastic potential, the scaling of the diffusion
coefficient is not of power law type.
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