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Abstract

A new algorithm constructing the magnetic flux coordinates is presented. The method is based on the algorithm
constructing the generalized magnetic coordinates (GMC), which is a magnetic coordinate without requiring the
existence of magnetic surfaces.

Keywords:

magnetic coordinate, flux coordinate, toroidal magnetic configuration

1. Introduction

The magnetic flux coordinates, such as Boozer’s
coordinates, are the important tool to study the magnetic
configurations as well as plasma confinement in toroidal
devices. The coordinate is usually constructed by the
algorithm given by Boozer [1]; the magnetic surface is
constructed by tracing a magnetic line of force for long time,
until the line covers the surface sufficiently dense. The two
dimensional Fourier transform on the magnetic surface is
constructed by one dimensional Fourier transform along the
magnetic line of force. This procedure is based upon the
assumption that the rotational transform ι is an irrational
number, and from the irrational number mι + n = ω two
integers, m, and n, are obtained. However, if the rotational
transform is near some low order rational number, it is not
easy to obtain the reliable results.

The flux coordinates assume the existence of the simply
nested magnetic surface structure. In the conventional
calculation of the flux coordinates, there is no way to confirm
whether the calculated surface is really a surface or not.

The generalized coordinate system (GMC) is introduced
as a magnetic coordinate system, which does not require the
existence of the nested magnetic surfaces. [2-5] A curvilinear
coordinate system (ξ, η, ζ ) is the GMC, when the magnetic
field B is expressed in the following form

B = ∇ × ∇ + ∇ × ∇Φ Ψ( , ) ( , , ) .ξ η ξ η ξ η ζ ζ (1)

Here the variable ζ  is the toroidal angle. Note that if the
function Φ is allowed to be dependent to ζ , such an
expression can be obtained for any curvilinear coordinate
system.

The numerical procedure to construct GMC is called as
the GMC algorithm. In the procedure the coordinates are
deformed so that the ζ-dependence of the vector potential is

reduced. When Ψ is a function of only ζ  and η, the surface,
Ψ = constant, is a magnetic surface. On the contrary, when
simply nested structure of magnetic surfaces exists the
function Ψ does not depend on the variable ζ.

Since the magnetic surface is not used as a coordinate
surface in GMC, the description of the magnetic structure
with or without nested magnetic surfaces is possible.
However, when the nested structure of magnetic surfaces
exists, by utilizing a coordinate surface coinciding with the
magnetic surface we can construct the magnetic flux
coordinates as a special case of the GMC.

In the next section we consider the GMC and the
numerical algorithm to construct GMC. The new method
constructing the flux coordinates in case of the existence of
the simply nested magnetic surfaces is discussed in Sec. 3. In
the last section the relation with the breaking of the magnetic
surfaces is discussed.

2. GMC algorithm

In a curvilinear coordinate system (ξ, η, ζ), the magnetic
flux densities Hα are defined as the contravariant component
of the magnetic field vector B multiplied by the Jacobian g :

H gB H gB H gBξ ξ η η ζ ζ= = =,  ,  . (2)

We assume that the coordinate ζ is a toroidal angle variable
with period 2π. If Hζ ≡ Φ (ξ, η), then there is a scaler function
Ψ, such that

H Hξ η

η ξ
= ∂

∂
= − ∂

∂
Ψ Ψ

,  , (3)

and the expression (1) is obtained. When the functions Hξ

and Hη depend on ζ, we use Hξ and Hη instead of Ψ, because
the latter include an arbitrariness of the function of ζ.

We use the notations for the averaged part and oscillation
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part with respect to ζ.

A A A A A≡ ≡ −∫ ∫d d ,  ˜ .ζ ζ (4)

Then, the condition for GMC can be written as H̃ζ = 0.
The transformation from GMC to the cylindrical

coordinates (r, φ, z) is expressed as

r R R n
n

n= ≡ +
≠
∑( , , ) ( , ) exp(i ),ξ η ζ ξ ξ η ζ

0

(5a)

z Z Z n
n

n= ≡ +
≠
∑( , , ) ( , ) exp(i ),ξ η ζ η ξ η ζ

0

(5b)

φ ζ= . (5c)

In this coordinate system, the flux densities are written as

H
Z

B
R

RB
R

B
Z

RBr z
ξ

φ φη ζ η ζ
= −

⎧
⎨
⎩

⎫
⎬
⎭

− −
⎧
⎨
⎩

⎫
⎬
⎭

∂
∂

∂
∂

∂
∂

∂
∂

, (6a)

H
R

B
Z

RB
Z

B
R

RBz r
η

φ φξ ζ ξ ζ
= −

⎧
⎨
⎩

⎫
⎬
⎭

− −
⎧
⎨
⎩

⎫
⎬
⎭

∂
∂

∂
∂

∂
∂

∂
∂

, (6b)

H
Z R Z R

Bζ
φξ η η ξ

= ∂
∂

∂
∂

− ∂
∂

∂
∂

⎧
⎨
⎩

⎫
⎬
⎭

. (6c)

Equations (6a) and (6b) can be rewritten as

∂
∂

+ ∂
∂

+ ∂
∂

=R H

H

R H

H

R rB

B
r

ζ ξ η

ξ

ζ

η

ζ
φ

, (7a)

∂
∂

+ ∂
∂

+ ∂
∂

=Z H

H

Z H

H

Z rB

B
z

ζ ξ η

ξ

ζ

η

ζ
φ

. (7b)

These equations are regarded as nonlinear eigenvalue
equations for unknown variables R and Z, with eigenvalues
hξ(ξ, η) ≡ Hξ/Hζ and hη(ξ, η) ≡ Hη/Hζ.

We solve these nonlinear equations by using the
Newtonian method. When the k-th approximation of the
coordinates (R(k), Z(k)) is known, the flux densities are
calculated. The oscillatory potentials ãξ and ãη are defined by
the following relation

H H
a

H H
a

H H
a a

ξ ξ η η η ξ

ζ ζ η ξ

ζ ζ

ξ η

= −
∂
∂

= +
∂
∂

= +
∂
∂

−
∂
∂

˜
,

˜
,

˜ ˜
. (8)

From these relations, we can notice that the reduction of H̃ζ

can be achieved by the reduction of  H̃ξ  and  H̃η .
The k +1-th approximation (R(k+1), Z(k+1)) is obtained in

order that the oscillatory part of the vector potential is
minimized. Putting

R R R Z Z Zk k k k( ) ( ) ( ) ( ),+ += + = +1 1∆ ∆ (9)

after some algebra, we obtain the relations

∆R
H

R v
a

H

R v
a

k k

= ∂
∂

∂
∂

−
⎧
⎨
⎩

⎫
⎬
⎭

− ∂
∂

∂
∂

−
⎧
⎨
⎩

⎫
⎬
⎭

1 1
ζ η ζ ξξ η η ξ

( ) ( )˜
˜

˜
˜ , (10a)

∆Z
H

Z v
a

H

Z v
a

k k

= ∂
∂

∂
∂

−
⎧
⎨
⎩

⎫
⎬
⎭

− ∂
∂

∂
∂

−
⎧
⎨
⎩

⎫
⎬
⎭

1 1
ζ η ζ ξξ η η ξ

( ) ( )˜
˜

˜
˜ , (10b)

where ṽ is a scaler function satisfying the equation

H
v

H
v

H
v

H a H aξ η ζ ξ
ξ

η
ηξ η ζ

∂
∂

+ ∂
∂

+ ∂
∂

= +
˜ ˜ ˜

˜ ˜ . (11)

Equation (11) is a magnetic differential equation; the periodic
solution is obtained only in case that the nested structure of
magnetic surfaces exist. In the general case without the nested
surfaces eq. (11) is replaced by the weaker condition

δ {
Ω

∫∫∫ ∂
∂

+ ∂
∂

+ ∂
∂

−

− =

H
v

H
v

H
v

H a

H a

ξ η ζ ξ
ξ

η
η

ξ η ζ
˜ ˜ ˜

˜

˜ } .2 0 (12)

The condition (11) is reduced to an elliptic equation for ṽ.
The main part of the GMC calculation is consumed in solving
the scaler function ṽ.

3. GMC algorithm to construct magnetic

flux coordinates

In this section we assume the toroidal magnetic
configuration with simply nested magnetic surfaces. The
region of the nested surfaces with a single magnetic axis is
denoted by Ω. For simplicity we assume the last closed
surface if supplied as the boundary condition.

In the numerical procedure described in the previous
section the n = 0 component of the coordinate functions are
fixed. If we replace eqs (5a) and (5b) by the following
equations

r R R m n
m n

m n= ≡ +∑( , , ) ( ) exp[(i[ )],
,

,ξ η ζ ξ η ζ (13a)

z Z Z m n
m n

m n= ≡ +∑( , , ) ( ) exp{i[ ]},
,

,ξ η ζ ξ η ζ (13b)

and add the requirement that

H H Hξ η ζ

η η
= = =0 0, ,

∂
∂

∂
∂

(14)

then we can obtain the flux coordinates, ξ being the magnetic
surface, and η the poloidal angle variable. This time, we put

H
a

H H
a

H H
aξ ζ η η ζ ζ ζ ξ

η ξ η
=

∂
∂

= 〈 〉 −
∂
∂

= 〈 〉 −
∂
∂

, , , (15)

with 〈āζ〉 = 〈āξ〉 = 0, where the brackets stand for the average
with respect to η.

The increments of the coordinates are

∆R
H

R v v
a

H

R v v
a a

k

k

= ∂
∂

∂
∂

+ ∂
∂

−
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⎩

⎫
⎬
⎭

− ∂
∂

∂
∂

+ ∂
∂

− −
⎧
⎨
⎩

⎫
⎬
⎭

1

1

ζ η

ζ ξ ξ

ξ η η

η ξ ξ

( )

( )

˜
˜

˜
˜ , (16a)
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1

1

ζ η

ζ ξ ξ

ξ η η

η ξ ξ

( )

( )

˜
˜

˜
˜ , (16b)

with

H
v

H
v

H a H aξ η ξ
ξ

ζ
ζξ η

∂
∂

+ ∂
∂

= + . (17)

We can replace the functions H̄ξ, H̄η, and H̄ζ in the left
side of the equation by their averaged values with respect to
η. Then we obtain the following equations for ṽ, and v̄.

〈 〉 ∂
∂

+ 〈 〉 ∂
∂

= 〈 〉H
v

H
v

H aη ζ η
ηη ζ

˜ ˜
˜ , (18a)

〈 〉 ∂
∂

= 〈 〉H
v

H aη ζ
ζη

. (18b)

Equation (18a) may have difficulty relating with resonance.
For our purpose, by using Fourier expansion

˜ ( ˜) exp{i( )},,ν ν η ζ= +∑∑
≠

m n

mn

m n
0

(19a)

˜ ( ˜ ) exp{i( )},,a a m nm n

mn

η η η ζ= +∑∑
≠0

(19b)

eq. (18a) can be solved as

( ˜) i
( )

( ˜ ) ,, ,ν ι
ι ε

ι ηm n m n
m n

m n
a= − +

+ +2 2 (20)

where ι is the rotational transform defined as ι(ξ) ≡ 〈H̄η〉/
〈H̄ζ〉. Here we introduced small parameter ε (for instance, ε =
10–6) in case that the resonant mode does not vanish on the
rational surface.

In the case discussed in the previous section, significant
numerical calculation is required to solve the elliptic equation
for ṽ, because the topology of the magnetic field is not known.
On the contrary, in this case, as the simply nested surface
structure is assumed, the magnetic differential equation can
be solved quite easily.

4. Summary and discussion

In this paper a new method constructing the magnetic
flux coordinates is introduced. The method is based on the
construction of the generalized magnetic coordinates (GMC).

Since the simply nested magnetic surfaces exist only in the
asymptotic sense in the asymmetric toroidal magnetic field
configuration, there is always a possibility of the magnetic
field component destroying the magnetic surfaces. In our
method, since the magnetic surfaces are constructed in three-
dimensional structure by deforming coordinate surfaces,
which is in contrast to the conventional algorithm to obtain
surface by covering the surface by a magnetic line of force,
any Fourier components on the surface can be calculated. On
the rational surfaces the existence of the resonant Fourier
mode of Hξ means the breaking of the magnetic surface
(emerging of magnetic islands), which can be detected by
using our method.

In the region where magnetic surfaces are destroyed, the
magnetic field can be written as

B b= ∇ × ∇ + ∇ × ∇ +H Hζ ηξ ξ η ξ ζ ξ( ) ( ) (21)

where

b = ∇ × ∇˜ ( , , ) .Ψ ξ η ζ ζ (22)

Reiman and Greenside introduced the “quasi-magnetic”
coordinate system to treat the case with magnetic islands or
stochastic regions. [6] In their coordinate system, magnetic
field has the same form as eq. (21); but the method of
construction is completely different. In their method, in the
island or stochastic regions the coordinate is calculated by
interpolating between the regions with good surfaces, which
can be composed by following the magnetic field lines.

The new proposed method dose not mean the economy
of the calculation, because to obtain magnetic surfaces in
certain precision, it is required for the sufficient number of
points to be calculated on the surface.

Detection of the last closed magnetic surfaces is left as
the subject of the future works.
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