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Abstract

A Large Helical Device equilibrium having a zero rotational transform surface is studied by using the three
dimensional MHD equilibrium code, HINT. We find existence of the equilibrium but with formation of the two or

three n = 0 islands composing a homoclinic-type structure near the center, where n is a toroidal mode number. The

LHD equilibrium maintains the structure, when the equilibrium beta increases.
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1. Introduction

In the Large Helical Device (LHD) [1], an MHD
equilibrium with both deep magnetic well and high magnetic
shear in the plasma core region attracts much attention from
a point of view of improved MHD stability and plasma
confinement. In the LHD, such an equilibrium can be realized
by a large Ohkawa current [2-4] induced by counter neutral
beam injection. In a plasma with a net subtractive toroidal
current of about —100 kA/T, the rotational transform is
expected to be below zero around the magnetic axis.

A helical equilibrium with a zero rotational transform
surface was studied in Heliotron E experiment [5]. When a
rotational transform at the center was below zero, strong
MHD activities were observed and were guessed to be
explained by an m/n = 1/0 resistive tearing mode, where m is
a poloidal mode number and »n is a toroidal mode number.
The result seemed to be understood by a numerical analysis
employing a low beta resistive MHD model for a straight
heliotron-like configuration [6]. The numerical study of ref.
[6] also showed that when the resonant surface existed near
the axis, the m/n = 1/0 tearing instability was weak and the
magnetic island width saturated. This result suggests the
possibility of existence of the equilibrium having a zero
rotational transform surface. From these previous studies
[5,6], at first we should start to investigate whether or not an
LHD equilibrium having a zero rotational transform surface
can be allowed.

2. HINT computation
Numerical analysis of the equilibrium is carried out by
using the HINT code [7-10]. The standard scheme of HINT

is shown as follows. The first step (A-step) is a relaxation
process of pressure along magnetic field lines under a
condition of a fixed magnetic field B. To expedite the pressure
relaxation, we make an average of pressure, p, along a field
line, and replace a value of pressure at each grid point with
the average p:
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where ¢ is a length along a field line starting from a grid

p',u’,u’) = pu', u’, u

point (u',u?u?). Toroidal periods of tracing a field line are
typically 20-60 in calculations of this article. In the second
step (B-step), calculation of a net toroidal current density j,.;,
e.g. Ohkawa current, is carried out under conditions of fixed
pressure and magnetic field, if a net toroidal current exists in
the equilibrium. The third step (C-step) is a relaxation process
of magnetic field under a fixed pressure profile:
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where j =(1/1y) V X B is the total current density. To calculate
an equilibrium with a net toroidal current, we modify the
Faraday equation, as shown in equation (3), which is given
by the following idea. When an equilibrium with a net
toroidal current has flux surfaces, Ohm’s law can be modified
as E + v x B = n(j — B{j-B),.. /{B?)), where {---) means the
flux surface average. Since the existence of nested flux
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surfaces is not assumed in the HINT code, a toroidal flux is
given by using contour lines of pressure. In an island and/or
the ergodic region, the flux is estimated by an interpolation.
Then the Faraday equation can be extended as

oB

=-VXE=V
ot % X

If there exist flux surfaces in a steady state, we have (E-B) =
0 =n{j-B) — {j-B),.,). Thus {j-B) becomes (j-B),,, in a
steady state, and we obtain an equilibrium with a net toroidal
current. Note that in the HINT computation, a numerical
equilibrium on the way to a steady state is not meaningful in
a sense of the MHD physics, and the scheme is justified when
the numerical equilibrium relaxes sufficiently into a steady
state.

A relaxation process computed by the HINT code starts
from the vacuum configuration with By = 1.5 T and R, = 3.75
m, and the initial pressure profile given as p = py(1 — s*)(1 —
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Fig. 1 Poincaré plots of field lines at the horizontally
elongated poloidal cross section in the LHD equilibrium
with $=0.56 %. The total net toroidal current /, is -100
KA/T.
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Fig. 2 Profiles of rotational transform 1/2x (solid circle) and
pressure (open circle) along Z= 0 for $~0.56 % and /,=
—-100 kA/T. Open triangles represent /2 in the vacuum
field.
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s), where B, is the magnetic field strength at the magnetic
axis, R, is the major radius of the axis, p, is pressure at the
axis, and s is the normalized toroidal flux. As shown in Fig.
1, we find that an LHD equilibrium having a zero rotational
transform surface is possible to exist. Here the equilibrium
beta value B is 0.56 %, and the total net toroidal current I, is
—100 kA/T. We assume that a net toroidal current density
modeling the Ohkawa current is given as j «< —(p/p,)*. Profiles
of rotational transforms and pressure are plotted in Fig. 2. In
the field line structure of Fig. 1, we see two islands. The
central island has a negative /27, and the other island with
the n = 0 mode, located around the central one, has a zero
rotational transform around an O-point of the central island,
as shown in Fig. 2. When the equilibrium beta increases to
1.7 %, the inner region sufficiently away from the separatrix
of the later island is split into two parts, and a doublet-type n
= 0 island having only one X-point located at Z = 0 is formed,
see Fig. 3. Note that the LHD equilibrium maintains a
homoclinic-type structure [9,11] composed by the islands near
the center, when f increases; see Figs. 1, 3 and 4. We can
consider that this field line structure is general for both helical
and tokamak plasmas, because the toroidal mode number of
the islands is zero. The magnetic axis and the central
rotational transform are plotted with an absolute value of the
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Fig. 3 Poincaré plots of field lines at the horizontally
elongated poloidal cross section in the LHD equilibrium
with f=1.7 %. The total net toroidal current /, is —100
KA/T.
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Fig. 4 Poincaré plots of field lines at the horizontally
elongated poloidal cross section in the LHD equilibrium
with f=3.8 %. The total net toroidal current /, is —100
KA/T.
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Fig. 5 The Shafranov shift of the axis for 1) open circle: =
0.56 %, 2) open square: = 1.7 %, and 3) open triangle:
B= 3.8 %. A dotted line represents the positions of the
axis in the vacuum. The central rotational transforms
for 1) cross (x): B= 0.56 %, 2) asterisk (¢): = 1.7 %, and
3) plus (+): B~ 3.8 % are also shown.
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Fig. 6 Poincaré plots of field lines at the horizontally
elongated poloidal cross section in the LHD equilibrium
with B= 1.7 %. The total net toroidal current /; is —(100/
1.5) KA/T.

total net toroidal current |/,| in Fig. 5. As |[,| increases, the
axis shift to the outside of the torus increases and the
rotational transform around the center decreases to zero.
When the central rotational transform crosses zero, however,
the Shafranov shift of the axis reduces. This is because of the
topological change of the field line structure around the
center; for example, see Figs. 3 and 6.

3. Conclusions

By using the HINT code, we have found that an LHD
equilibrium having a zero rotational transform surface is
possible to exist. And we have seen that the LHD equilibrium
maintains the homoclinic-type structure composed by the
islands near the center, when f increases. Let us consider
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comparison to the tokamak plasma with the current hole.
Recently, an idea of an axisymmetric tri-magnetic-islands
(ATMI) equilibrium has been proposed in ref. [12], where the
ATMI equilibrium is one of the candidates for a tokamak
equilibrium having a zero rotational transform surface. The
ATMI equilibrium has three islands with n = 0 near the center,
and they compose the heteroclinic-type structure [9,11]. As
contrasted with ref. [12], in this article we have suggested
that the homoclinic-type structure is also allowed. Note that
the structure shown in this article is general in both helical
and tokamak plasmas because of the islands having the
toroidal mode number n = 0.

A numerical study of the nonlinear stability in a
tokamak-like equilibrium having a negative central current
[13] suggests that the equilibria obtained here require to be
examined on an MHD stability of n = 0 modes. Then the
nonlinear stability of the equilibria are studied now by using
the nonlinear simulation code, which is a natural extension
of the HINT code [14], and the results will be reported in
near future.
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