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Abstract

Linear local gyrokinetic-Poisson equations are solved numerically, to investigate the stability of collisionless
electrostatic drift modes in a helical system. As a model of helical plasmas, Large Helical Device (LHD) is considered,
whose MHD equilibrium is numerically obtained. A circular tokamak with comparable aspect ratio to that of the
LHD is also considered for comparison. As electrostatic drift wave branches, ion temperature gradient modes (ITG),
trapped electron modes (TEM), and electron temperature gradient modes (ETG) can become unstable. For these modes,
the local parameter dependence is investigated and destabilizing mechanisms are discussed in an LHD configuration.
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1. Introduction

Drift wave instabilities are considered to cause a large
amount of the transport and it is important to investigate their
stability properties. Many investigations have been done for
tokamaks, while there seem to be only numerable studies for
helical plasmas. There exist many helical devices with a wide
variety of geometry and magnetic field structure, so that it is
important to investigate the stability in each helical systems
and integrate the results, in order to discuss what is common
and what is inherent feature in many configurations including
tokmaks. Thus we investigate the stability of the drift wave
in a helical system, Large Helical Device (LHD) [1], and try
to obtain the driving mechanisms of each linear instability.
For this purpose, we solve the linear local gyrokinetic-Poisson
equations in the electrostatic regime. The equation we apply
is rather exact in the framework of linear gyrokinetic theory
[2,3], where the ballooning representation is used as a
minimal approximation. Here we consider only collisionless
cases. In this formulation, the non-adiabatic dynamics of
circulating and trapped electrons/ions is formally treated
without any assumptions in all the frequency regime. Then,
as different drift branches, ion temperature gradient modes
(ITG), trapped electron modes (TEM), and electron
temperature gradient modes (ETG) can be considered without
missing the correlation between them.

The model MHD equilibria are numerically calculated
by VMEC code with a fixed boundary constraint [4]. The net
current is assumed to be zero for LHD. The temperature and
density profile are prescribed as a function of normalized

toroidal flux, s, as T/T(0) = 1 – s and n/n(0) = (1 – s)0.2,
where ni = ne and Ti = Te are assumed below. Then p = 2nT is
used as an input for VMEC code. The central beta (β0 ≡
2µ0p(0)/B0

2) is 1.0 %, where β0 is averaged magnetic field
strength at R = R0 = 3.75[m]. The measure of temperature
gradient, η = d ln T/d ln n = 1/a = 5 holds everywhere, and
sufficient instabilities are expected for this value. For
comparison, we also consider a circular tokamak with
comparable aspect ratio R0/a = 3.9/0.57 to the LHD, for which
q profile is assumed to be the same as that in the currentless
LHD.

2. ITG cases

In Fig. 1, the k⊥ρthi dependence of the frequencies is
shown for LHD, to investigate the ion finite Larmor radius
(FLR) effect. Here ρthi ≡ vthi/Ωi and k⊥ = nk|k/kα| with nk being
a toroidal mode number, and | k /kα| is treated as an
equilibrium quantity with a fixed ballooning angle θk [2]. A
case for non-adiabatic electrons and ions is shown by closed
circles. The mode can also be destabilized by only non-
adiabatic ions which is shown by open circles. This and
negative real frequency indicate that the modes are the ITG.
From the comparison of the cases with or without the non-
adiabatic electrons, it can be seen that the non-adiabatic
electrons are destabilization for the ITG, and this can be
explained such that the fraction of stabilizing adiabatic
electrons is reduced. We also plot a case that the magnetic
drift frequency ωd is ignored in the gyrokinetic equation,
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which is denoted by triangles in Fig. 1. Since the curvature
of a field line is entered only through ωd, the residual
instabilities are driven by slab-like, parallel compressibility.
The growth rate is reduced by ignoring the ωd, but the
instabilities still remain unstable.

In Fig. 2(a), the radial dependence of the ITG
frequencies is shown as a function of normalized toroidal flux
s, for LHD and a tokamak with a comparable aspect ratio.
Here we consider a fixed toroidal mode number nk, and it is
chosen as nk = 86 for LHD and nk = 142 for tokamak, such
that k⊥ρthi (θ = 0) value is comparable at a fixed radial label.
The value of k⊥ρthi is also shown on right Y-axis in Fig. 2(a),
which is large at the core and small at the edge depending
mainly on the temperature. For LHD and the tokamak, it can
be seen that the frequency dependence is not so different. We
also plot the α dependence of the frequencies in Fig. 2(b),
where change of α affects the local curvature and local shear

Fig. 1 k⊥ρthi dependence of ITG frequencies in LHD. Real
frequency and growth rate are shown by dashed and
solid line respectively. Local parameters are (s,θk,Mα) =
(0.7,0,π). Closed circles are for a case of non-adiabatic
ions and electrons, and open circles are for a case of
eliminating non-adiabatic elecrons. Triangles are for a
case of ignoring ωd.

Fig. 3 ITG eigenfunction φ for (a) LHD and (b) comparable εt

tokamak, at s = 0.7 and k⊥ρthi(θ = 0) = 0.6. Real
(imaginary) part is shown by solid (dashed) line.
(c) Modulation of magnetic field strength h = B0/B for
the tokamak (dashed line) and LHD (solid line).

Fig. 2 (a) Radial dependence of ITG frequencies in LHD (circles) and tokamak (triangles) with θk = 0 and Mα = π. (b) Field line
dependence of ITG frequency in L HD with s = 0.7 and θk = 0. Real frequency and growth rate are shown by dashed and solid
line respectively. In (a), k⊥ρthi(θ = 0) value is also plotted by dotted line for right coordinate.
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in the toroidal direction in non-axisymmetric systems through
the change of field line label. Here M in the figure denotes a
number of field periods (M = 10 for LHD). The equilibrium
and linear instabilities are 2π/M periodic in α and it is
negligible in the axisymmetric case. It can be seen that the α
dependence is found to be very weak in LHD.

The value of flux surface quantities like q, q′ is changed
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with radial label, and local quantities like local shear and
curvature are changed with the field line label, so that the
change of these parameters is expected to affect the stability.
Nevertheless, the above results show that these effects are
weak, and the radial growth rate curve seems to be mainly
determined by k⊥ρthi value, as can also be seen by comparing
with Fig. 1. Then the core region is stabilized by the ion FLR
effects and the edge is also stabilized by the small k⊥ρthi.

Typical ITG eigenfunctions in LHD and our tokamak
case are compared in Fig. 3. It can be seen that the mode
width along a field line is not so different in LHD and the
tokamak, and the modes are not confined in a helical ripple
but in a toroidal period.

From above, the modes at θk ~ 0 are not so different in
LHD and the comparable tokamak. However, the slight
difference can be found when ballooning angle θk is changed.
The results are plotted in Fig. 4 for LHD (left) and

comparable tokamak (right). In this figure, we also show a
case that ωd is ignored which is denoted by triangles. The
instabilities in this case are driven by the parallel
compressibility, as already mentioned in Fig. 1. As is
reasonable, the growth rates are same level for LHD and the
tokamak when ωd is nonexistent. In the tokamak case, the
comparison with or without ωd shows that ωd is unfavorable
in the outer side of torus with θk ~ 0, while it becomes
favorable in the inner side as θk increases. On the other hand,
in the LHD case, ωd is always unfavorable. This is because
the locally unfavorable curvature extends to the inner side of
torus in the LHD, which is reflecting the magnetic hill nature.

3. TEM cases

In Fig. 5 (left), we show the frequencies of TEM as a
function of k⊥ρthi in LHD. A case for eliminating non-
adiabatic ions is also plotted by open circles, and it can be
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Fig. 4 θk dependence of ITG frequencies in LHD (left) and comparable tokamak (right), at s = 0.7. Real frequency and growth rate is
shown by dashed and solid line with circles. Triangles also show cases that magnetic drift frequency ωd is ignored.
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Fig. 5 k⊥ρthi dependence of TEM frequencies in LHD. Local parameters are (s,θk,Mα) = (0.7,0,π). Closed circles show a case of non-
adiabatic ions and electrons, and open circles show a case of elminating non-adiabatic ions. (Right) k⊥ρthe dependence of ETG
frequencies in LHD. Local parameters are (s,θk,Mα) = (0.7,0,π). Olosed circles show a case for quasi-neutrality condition, and
open circles show a case for including Debye shielding effect. Solid (dashed) line shows the growth rate (real frequency) for
both figures.
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seen that the modes can be unstable in the absence of the
non-adiabatic ions. This indicates that the electrons are
essential for the instabilities, and this and positive ωr indicate
the modes are the TEM.

As can be seen, the increase of k⊥ρthi cannot stabilize
the modes, unlike the case of ITG. This is reasonable because
the ion FLR effect should not work for the electron-dominated
dynamics. By comparing the cases with or without the non-
adiabatic ions, the non-adiabatic ions are found to be
stabilization, contrary to the role of the non-adiabatic
electrons for the ITG. The reason is now under consideration.

In Fig. 6(a), the radial dependence of TEM frequencies
is shown. Here the value of k⊥ρthi (θ = θk) is also shown on
right-Y axis. From the Fig. 5 (left), the mode is not stabilized
by the increase of k⊥ ρthi unlike the ITG, so that the
stabilization in the core cannot be explained by the high value
of k⊥ρthi. Thus in this case, the reduction of trapped electron
fraction is responsible for this.

The θk and Mα dependences of frequencies are shown
in Figs. 6(b) and 6(c). For both cases, the frequencies have
very weak dependence on these parameters. For the TEM
cases, this is because the modes are very localized in a helical
ripple, and the modes can find another ripple to localize when
the θk or Mα is changed. This can be seen in the eigenfunction
structure as shown in Fig. 6(b). Here Mα is changed as π and
0 which correspond to locally unfavorable and favorable
curvature for θ ~ θk = 0. For the Mα = 0 case, the
eigenfunction is odd, and it can localize in the neighborhood
bad curvature region.

4. ETG cases

The ETG modes can also be destabilized by electron
temperature gradient. The dynamics is almost the same as the
ITG, because two types of instabilities can be treated merely
by scale transformation, when ITG/ETG is considered to be
driven only by ions/electrons.

Possible changes between the ITG and ETG come from:
(i) non-adiabatic electrons can contribute to the ITG as

discussed in Sec. 2, and (ii) spatial scale of ETG can become
comparable to the Debye length so that the Laplacian term in
the Poisson equation (Debye shielding term) is not negligible.

To investigate the latter, we show the ETG frequencies
as a function of k⊥ρthe in Fig. 5 (right), in cases with or
without the Debye shielding term. Here we consider only
electron species because it turned out that the bounce
frequency of ions is too small compared to the dynamics;
ω/ωbi >> 1 and a divergent problem often occurs numerically.
However, it seems not so wrong to ignore the ion
contributions because the ion FLR effect should already
eliminate the ion’s significance in this high wave number
regime.

It can be seen that the Debye shielding gives an
additional stabilization as k⊥ρthe increases. On the other hand,
it is negligible for k⊥ρthe <~ 0.3 and this indicates that the
quasi-neutrality condition is well satisfied for the ITG or TEM
regime. Here we fix the bata value in these calculations,
however, the Debye shielding effects also strongly affect the
stability at the low beta (or low density), as can be understood
from the definition of the Debye length, λD

2 = ε0Te/(ee
2ne).

The other properties of ETG are expected to be resemble to
the ITG.

5. Conclusions

 As a first step of linear stability analysis of electrostatic
drift modes in LHD, the linear gyrokinetic-Poisson mode
equation is solved in a numerically obtained equilibrium with
a fixed temperature and density profile, and the results are
compared to a circular tokamak with the comparable aspect
ratio and the same magnetic shear (safety factor) profile.

The ITG modes are found to be unstable for k⊥ρthi
>< 1.

The radial dependence of the ITG frequencies is considered
to be determined by k⊥ρthi so that the modes are stabilized in
the plasma core with high k⊥ρthi, and they are also stabilized
at the edge with low k⊥ρthi . The comparison with a tokamak
with comparable aspect ratio shows that the ITG modes in
LHD have similar properties to those in the tokamak. The
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Fig. 6 (a) Radial dependence, (b) field line (Mα) dependence, (c) θk dependence of TEM frequencies with nk = 86. Solid (dashed) line
shows the growth rate (real frequency). Two of local parameters (s,θk,Mα) = (0.7,0,π) are fixed for each dependence plot. In (a),
k⊥ρthi(θ = θk) value is also plotted by dotted line on right coordinate.
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reason is that the local (toroidal or helical) curvature
destabilization is dominated by the slab-like parallel
compressibility because the negative q′ shear tends to reduce
the toroidal effects for the ballooning-like instabilities, and
the slab-like mechanism is common effect in the torus as well
as slab configurations. In addition, the large temperature
gradient η = 5 also makes the instabilities very strong. Thus
both the negative q′ and large η assumed in this study are
responsible for the similarity of ITG properties in LHD and
the tokamak.

The TEM can also be destabilized for k⊥ρthi
>< 1. Unlike

the ITG, the eigenfunction of the TEM is strongly localized
in a helical ripple 2π/M, and thus the modes should be
strongly affected by the local magnetic structure.
Nevertheless, the local parameter (θk,α) dependence is found
to be weak. This is because the modes can find another helical
ripple to localize when these parameters are changed. The
TEMs with a fixed toroidal mode number are stable in the
core because the trapped electron’s fraction becomes small
as in the tokamak. As a result, both the ITG and the TEM
tend to be stable in the core, although the stabilizing
mechanisms are different. It is noted that the TEMs are
usually stabilized in the negative q′ tokamaks, so that the
TEM results here are considered to be inherent to the LHD.

Its importance in the LHD experiments should be studied in
details.

The ETG can also be destabilized for for k⊥ρthe
>< 1. In

addition to the electron FLR effects, the Debye shielding
effects can also gives stabilization for the ETG. Except for
the differences of the temporal and spatial scales associated
with the mass ratio, the ETG would be rather resemble to the
ITG, at least for the linear electrostatic gyrokinetic analysis,
as can be checked by normalizing the gyrokinetic-Poisson
equations appropriately.
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