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Abstract

Algebraic behavior of three-dimensional fluctuations is analyzed for a static equilibrium of ideal magneto-
hydrodynamics (MHD). Without the reduction of variables to the Lagrange displacement, the linearized ideal MHD
equations constitute a non-Hermitian (non-selfadjoint) system. Degeneracy of Alfvén continuous spectra causes a
resonant interaction between eigenmodes. Solution of the initial value problem shows a temporally algebraic and
spatially localized growth even if there is no exponentially unstable mode.
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1. Introduction

The algebraic instability has been attracting a lot of
interest in the linear stability analysis of various fluids and
plasmas (non-neutral plasma, galactic phenomena,
atmospheric dynamics and so on). Since the growth of the
perturbation field is temporally algebraic (∝ tα), this
instability can not be found by the conventional normal modes
analysis or the dispersion relation which assumes the
exponential behavior (e–iω t with eigenvalue ω) of solutions and
the existence of a complete set of eigenfunctions.

If we write linearized equations in the form of an
evolution equation

i f ft∂ = ,K (1)

the spectral resolution of the linear operator K is guaranteed
by the Von Neumann theorem so far as K is Hermitian
(selfadjoint). Then the solution f can be completely
decomposed into eigenfunctions (or eigenmodes) which may
be singular if K has the continuous spectrum. The algebraic
behavior stems from the non-Hermitian property of K. A
typical example is the Orr-Sommerfeld and Squire equations
[1] which are known as the incompressible viscid fluid
equations linearized around laminar shear flow. Its
mathematical structure is written like
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where ṽx and w̃x , respectively, denote the x component of
velocity and vorticity perturbation. If the spectrum of Ksq

coincides with that of Kos (degeneracy), we observe linear

growth (∝ t) of w̃x due to the resonance between eigenmodes,
which is analogous to the Jordan canonical form of the non-
Hermitian  matrix in linear algebra. This algebraic growth is
expected to reach nonlinear regime and trigger turbulence.

However, the spectral resolution of non-Hermitian
operators is mathematically unsolved, and therefore we must
solve the initial value problem directly. Especially in ideal
fluids and plasmas, the continuous spectrum reflects the
infinite dimensional property of functional space which
cannot be understood as a simple extension of linear algebra
[2]. It is a mathematically nontrivial problem what happens
if the resonance between singular eigenmodes occurs.

In this short paper, we will demonstrate an algebraic
behavior which occurs in ideal magnetohydrodynamics
(MHD) with slab geometry. It will be produced by degeneracy
of Alfvén continuous spectra. The algebraic growth is
localized on the rational surface and may ubiquitously occur
even if no exponential instability exists.

2. Non-Hermicity of ideal plasma

In general, stability of plasma is analyzed by solving the
linearized MHD equations (simultaneous partial differential
equations), which is represented by an evolution equation for
the fluctuation part of velocity (ṽ), magnetic field (b̃) and
pressure ( p̃). In many cases, these perturbation fields in the
vicinity of the equilibrium are reduced to a displacement
vector ( ) and the linearized equation is written as ∂t

2  =
H  where H is known as a Hermitian operator [3]. Since
the spectral resolution of Hermitian operator is
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mathematically possible, the MHD stability analysis is
conventionally based on the dispersion relation which
determines if the imaginary part of ω is positive or not.

However, the special initial conditions, p̃⏐t=0 = 0 and b̃⏐t=0

= 0, are assumed in the above reduction process, and the
spectrum of the original system (1) for the seven variables
f = (ṽ, b̃, p̃) does not perfectly coincide with that of H.

In the following analysis, let us assume the incom-
pressibility for simplicity and consider a slab equilibrium,

B V= , , , = , , ,( ( ) ( )) ( )0 0 0 0B x B xy z (3)

P x x( ) ( )+ | | / = .B 2 2 const (4)

Taking strong magnetic shear into account, we do not adopt
the reduced MHD approximation, but consider “three-
dimensional” fluctuations, i.e.,

˜ ( )
( )

v x t e
i k y k zy z, ,+ (5)

˜( )
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b x t e
i k y k zy z, ,+ (6)

˜( )
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p x t e
i k y k zy z, ,+

(7)

where we made use of the wavenumber ky and kz. We will
also use k = (0, ky , kz) and k = ⏐k⏐ for simple notation. Let
us introduce

x y z z yw ik v ik v˜ ˜ ˜= − , (8)

x y z z yj ik b ik b˜ ˜ ˜= − , (9)

as independent variables. Due to the incompressibility, the
pressure fluctuation p̃ is given by the Poisson equation and
the linearized system can be described by the four
independent variables, ṽx, w̃x, b̃x and j̃ x as follows.

i w x j x bt x a x x∂ = − + ,˜ ( ) ˜ ( ) ˜ω ι (10)

i j x w x vt x a x x∂ = − − ,˜ ( ) ˜ ( ) ˜ω ι (11)

i v x b x bt x a x a x∂ ∆ = − ∆ + ,˜ ( ) ˜ ( ) ˜ω ω ″ (12)

i b x vt x a x∂ = − ,˜ ( ) ˜ω (13)

where ∆ = ∂x
2 – k2 is Laplacian operator, a prime (′) denotes x

derivative, ωa(x) = k·B(x) denotes local Alfvén frequency and
we put ι(x) = [B′(x) × k]·ex. In terms of M± = ∆(ṽx

–+ b̃x) and
S± = w̃x

–+ j̃ x, these equations are rewritten in the matrix form
of
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If we consider normal modes such as ṽx(x,t) = ṽx(x)e–iω t,
(12) and (13) are combined into, by eliminating b̃x,

∂ − ∂[ ] − − = ,x a x x a xv k v( ) ( )˜ ˜ω ω ω ω2 2 2 2 2 0 (15)

which is well known as the eigenvalue problem of the Alfvén
wave (the stream function replaces ṽx in the case of two-
dimensional fluctuation). Barston [4] considered this problem
and proved that there is no spectrum in addition to the Alfvén
continuous spectra σc

+ and σc
–, where

σ ω ω ωc a x± = ∈ ; = ± .{ ( )} (16)

Furthermore, the upper two equations in (14) have the same
continuous spectra due to the multiplication operator ±ωa(x).
As a result, the evolution equation has four degenerate
continuous spectra in total. Since the variables S± are forced
by M± like the Orr-Sommerfeld and Squire equations, we
can expect an algebraic growth of S± due to the resonance
between the continuous spectra. But, since we do not have
mathematical theory to describe it, we will solve the initial
value problem in the next section.

3. Analysis of algebraic behavior

We assume that the profile of the ambient magnetic field
is linear and the rational surface is located on x = 0;

ωa x x x( ) ( )= ⋅ = .k B (17)

In this coordinate system, we consider a finite domain
x ∈ [–L1, L2] (L1 > 0, L2 > 0) with a Dirichlet boundary
condition

x xv L t v L t˜ ( ) ˜ ( )− , = , = ,1 2 0 (18)

x xb L t b L t˜ ( ) ˜ ( )− , = , = .1 2 0 (19)

We denote the spectrum by σc = σc
+ σc

– which are nothing
but σc

+ = [–L1, L2] and σc
– = [–L2, L1]. Using the Laplace

transformation defined by

[ ˜ ( )] ˜ ( )  ( )x x
i t

v x t v x t e dt, = , , ∈
∞

∫0

Ω ΩL (20)

we obtain, instead of (15),

∂ − ∂[ ] − −

= , − ∆ , ,

x x

x x

x V k x V

i v x ix b x

( ) ˜ ( ) ˜
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Ω
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0 0 (21)

where Ṽ(x,Ω) = L[ṽx(x,t)]. If the initial conditions ṽx(x,0) and
b̃x(x,0) are regular functions, this solution Ṽ(x,Ω) becomes
singular at {(x,Ω); x = ±Ω}. For Ω = ω ∈ σc\{0}, there are
two singular points x = ±ω, and the Frobenius method gives
the well known logarithmic singularities, log(x ± Ω). The
inverse Laplace transformation of these singularities shows
the phase mixing damping in proportion to 1/t [4,5].

On the other hand, for Ω = 0, the two singular points
overlap at the rational surface x = 0. After some careful
considerations, we can write the general solution around x =
Ω = 0 as
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where C1(Ω) and C2(Ω) are coefficients determined by the
outer solution and the boundary condition (so-called
continuation data), and O(Ω) denotes the terms that vanish
when Ω → 0. For the limit of Ω → ±i0, we obtain

˜( ) ( ) ( ) ( )V x i C i C i πiY x,± = ± ± − ,0 0 0 21 2� (23)

where Y(x) denotes the Heaviside function. In the domain
[–L1, L2] except for x = 0, Ṽ(x, ±i0) must satisfy (21) with Ω
= ±i0, i.e.,

∂ ∂[ ] − = ∆ , .x x xx V k x V ix b x2 2 2 0˜ ˜ ˜ ( ) (24)

Solving this equation and continuating the solution with (23)
result in
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From (13), B̃(x,Ω) = L[b̃x(x,t)] is given by
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By the inverse Laplace transformation, we can finally obtain
the asymptotic behavior (t → ∞) as

xv x t˜ ( ), → ,0 (28)

x xb x t b g x˜ ( ) ˜ ( ) ( ), → , .0 0 (29)

This convergence speed is characterized by 1/t.
The behavior of the remaining variables, w̃x and  j̃ x, are

easily estimated by using the above result. First, we obtain,
by definition,

∆ =
± , ,
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x V x ib xxL (30)

By substituting this expression, the Laplace transformation of
the upper two equations in (14) leads to
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The last term in the right hand side yields an solution which
shows a phase mixing like S±(x,0)e

–+ixt. On the other hand, the

singularity of 1/Ω(Ω –+ x) brings about a localized algebraic
growth at x = 0 as far as ι(0) ≠ 0 and b̃x(0,0) ≠ 0, which can
be written like

S± ± , − .~ ( ) ˜ ( )ι 0 0 0
1

x

ixt

b
e

x
(32)

By calculating w̃x = (S+ + S–)/2 and j̃ x = (S– – S+)/2, we can
find that Im(w̃x) and Re( j̃ x) increase in proportion to time
around x = 0. Since we supposed k·B(0) = 0, Im(w̃ x)
corresponds to the parallel component of ṽ with respect to B;
ṽ||(0,t) ∝ t.

4. Summary

By considering incompressible three-dimensional
fluctuations, the linearized ideal MHD equation has four
Alfvén continuous spectra. They degenerate with each other
and the resonant interaction occurs only at zero frequency due
to the non-Hermitian property of the evolution equation.
Although the spectral theory for non-Hermitian operator has
not been established, the initial value problem indicates the
existence of algebraic growth which is localized on the
rational surface.

On the rational surface, the initial perturbation of
magnetic field receives no force since it does not bend the
field line. Then, the field line remains inclined with respect
to the ambient pressure contour, which causes a constant
acceleration of parallel plasma motion; ṽ|| ∝ t. This physical
mechanism of the algebraic instability is not included in the
stability analysis of the Lagrange displacement which assumes
b̃x(x,0) ≡ 0.

In more realistic situations, the viscosity and the
resistivity have a considerable effect on the fine structure that
we showed. However, our algebraic instability induces the
growth of perturbation energy in small scale, which can
rapidly grow depending on the initial condition, and may be
related to the development of turbulence in inhomogeneous
magnetic field. The effect of shear flow will be discussed
elsewhere.
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