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Abstract

Analysis of linear stability of plasmas by solving Maxwell’s equations using dielectric tensor is described.
Dielectric tensor is derived from multi-fluid equations taking the electron inertia, the pressure gradient, the parallel
current, and the collisional friction into account. Numerical calculations using a newly developed numerical code
TASK/WA illustrate the effect of pressure gradient on the TAE (Toroidicity-induced Alfvén Eigenmode) [1] and the
pressure dependence of the internal kink mode.
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1. Introduction

Macroscopic instabilities of plasmas are important
subjects in fusion research and have been extensively studied
by use of magnetohydrodynamics. In a high temperature
plasma, however, kinetic effects play a vital role in stabilizing
and destabilizing plasmas. In most of previous analyses,
kinetic effects are involved perturbatively. To take the kinetic
effects into account non-perturbatively, we solve Maxwell’s
equations using dielectric tensor which expresses the linear
response of plasmas. Dielectric tensor can be derived for
different physics models such as multi-fluid model, kinetic
model (without drift motion), drift kinetic model, drift kinetic
model taking account of particle orbit, and so on.

In this paper, as a first step, we employ a dielectric tensor
derived from the collisional multi-fluid equations taking the
electron inertia, the pressure gradient, and the parallel current
into account. The numerical results for tokamak plasmas
illustrate the effect of pressure gradient on the TAE and the
pressure dependence of the internal kink mode [2].

2. Full wave analysis of eigenmode

We solve Maxwell’s equations for the scalar φ and vector
potential A in the flux coordinates (α,β,ϕ)

– ∇∇ × ∇∇ × A + iω
c 2

ε ⋅ ∇∇φ + ω 2

c 2
ε ⋅ A = –µ 0 jext

↔ ↔ (1)

∇∇ ⋅ ε ⋅ ∇∇φ – iω ∇∇ ⋅ ε ⋅ A = i
ω ε 0

∇∇ ⋅ j ext

↔ ↔ (2)

∇∇ ⋅ A = 0 (3)

where ε↔ is the dielectric tensor, α, β and ϕ are the toroidal

flux, poloidal angle, and toroidal angle respectively. Other
notations are standard. Then, we obtain eigen functions and
eigen frequencies by searching for the complex frequencies
which make the wave electric field maximum for a given
external current jext proportional to the plasma density [3].

3. Derivation of dielectric tensor from

multi-fluid equations

We derive a dielectric tensor by linearizing the multi-
fluid equations (equations of continuity, motion, and state):

∂nj

∂t
+ ∇∇ ⋅ (nj u j) = 0 (4)

m j nj
∂

∂t
+ u j ⋅ ∇∇ u j = –∇∇ Pj

+ qj nj (E + u j × B ) – n j συ
j k

(u j – uk )Σ
k ≠ j

(5)

d
dt

Pj n j
– γ = 0 (6)

where mj, qj, nj, uj, Pj are the mass, charge, density, fluid
velocity and pressure of the particle species j, E is the electric
field, B is the magnetic field, and 〈σv〉jk is the collision rate
between the particle species j and k. The multi-fluid equations
are solved with respect to the first order particle flux Γj1 =
nj0uj1 + nj1uj0, and a conductivity tensor σ↔ is derived by
substituting 1 to the equation j1 = Σj qjΓ1 = Σj σ

↔
j · E. Then,

dielectric tensor is calculated from

ε = I + i
ωε 0

σ j .Σ
j

↔ ↔↔
(7)
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For simplicity, we define local orthogonal coordinates,
derive the dielectric tensor on them, and transform it for the
flux coordinates. The definitions of the local orthogonal
coordinates are

x = ∇∇α / | ∇∇α | , z = B0 / B0 , y = z × x (8)

and transformation is expressed by

ε flux = µ ⋅ ε xyz ⋅ µ –1↔ ↔ ↔ ↔ (9)

where

µ =
x ⋅∇∇α x ⋅∇∇β x ⋅∇∇ϕ
y ⋅∇∇α y ⋅∇∇β y ⋅∇∇ϕ
z ⋅∇∇α z ⋅∇∇β z ⋅∇∇ϕ

.
↔ (10)

The conductivity tensor σ↔j,xyz of each particle species in
local orthogonal coordinates satisfies following relations.

I Xie

Xei I

σ σi , x y z

σ e , x y z

= 0i

0e

↔

↔ ↔ ↔ σ↔
↔ ↔ ↔

(11)

where the subscripts i and e denote ion and electron,
respectively, and

σ 0j =
i q j

2 nj0

m j
C j ⋅ I + 1

ω uj0 × k ×↔ ↔ ↔ (12)

Xj k = – inj0

qk

qj
C j ⋅ I –

uj0 k
ω συ

j k

↔ ↔ ↔
(13)

Cj =
Mj

(ω j′ + ivj)
⋅ I +

γ Tj

mj ωWj

kj′ k ⋅ Mj

↔ ↔ ↔
↔

(14)

Wj = ω j′ + ivj –
γ Tj

mj ω
k ⋅ Mj ⋅ kj′

↔ (15)

Mj = δ –1

×
(ω j′ + ivj )

2 iΩj (ω j′ + ivj ) 0

– i(Ωj + u ′j 0 y – Zj ky )(ω j′ + ivj ) (ω j′ + ivj )(ω j′ + ivj – iZj kx) 0

– i(u ′j 0 z – Z j kz ) (ω j′ + ivj ) Ωj (u ′j 0 z – Z j kz ) δ

↔

(16)

δ = (ω′j + i vj ) (ω′j + i vj – iZ j k x) – Ω j (Ω j + u ′j 0 y – Zj k y )

(17)

Ω j = q j B0 / m j (18)

Z j = 1
mj nj0 ω ′j

γ Tj0

dn j0

dx
–

dPj0

dx
(19)

vj = nk0 〈σv〉jkΣ
k ≠ j

(20)

ω ′j = ω – k ⋅ u j 0
(21)

γ Tj k′j = γ Tj k + ω′j m j u j 0 + i qj E0 + i m j 〈σv〉jk nk 0 uk 0Σ
k ≠j (22)

In the collisionless limit, 〈σv〉jk → 0, σ↔j,xyz = σ↔0j.

4. Numerical calculations

We have developed a new numerical code TASK/WA to
solve Maxwell’s equations. TASK/WA uses the finite
difference method in the α direction, and Fourier
decomposition in the β and ϕ directions. In the present
calculations, a circular cross section (R – R0 = ρ cos β, Z = ρ
sin β, ρ = α /α max ) is assumed, and the density profile,
temperature profile, and q profile are given by

nj = (nj0 – nja) (1 – ρ2) + nja (23)

Tj = (Tj0 – Tja) (1 – ρ2) + Tja (24)

q = q0 + (qa – q0)ρ2 (25)

Other parameters are as follows: toroidal mode number n =
1, B0 = 3 T, R0 = 3 m, a = 1 m, ne0 = 1020 m–3, nea = 1010 m–3,
Te0 = 3 keV, Tea = 1 eV, 〈σv〉ei ∝ Z2Tj

–3/2.

4.1 Analysis in the frequency range of TAE

and the lower

We studied the effects of the pressure gradient, parallel
current, and collisions on TAE and other low frequency modes
with q0 = 1 and qa = 2. Figure 1(a) ~ (d) are contour plots of
[log(∫ |E |2 dV)]–1 as a function of complex frequency f, where
E = –∇∇φ + iωA is the wave electric field to be integrated
over the plasma volume. The darker the color becomes, the
larger the wave electric field is. Figure 1(a) is a reference
case (without the pressure gradient, parallel current, and
collisions). The hollow point of f ~– 0.165 MHz is TAE. With
the pressure gradient, new two branches appears in the region
of Re( f ) < 0.1 MHz (Fig. 1(b)). Because the effects of
continuum damping and radiative damping are not included
in the dielectric tensor, the damping rate of TAE without
pressure gradient, parallel current, and collisions is nearly 0.
And with pressure gradient, the mode distribution is
symmetric with respect to the real axis. With pressure gradient

Fig. 1(a) Contour map of [log(∫ |E |2 dV)]–1 as a fuction of
complex frequency for TAE or low frequency modes
without pressure gradient, parallel current and
collisions (q0 = 1, qa = 2).
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Fig. 2(b) With pressure gradient, without parallel current and
collisions

Fig. 2(a) TAE mode structure (Eβ) without pressure gradient,
parallel current and collisions

Fig. 1(d) with collisions, pressure gradient and parallel current

Fig. 1(c) with pressure gradient and collisions, without
parallel current

Fig. 1(b) with pressure gradient, without parallel current and
collisions

α α

βE

α α

βE

Fig. 2(c) With parallel current, without pressure gradient and
collisions

α α

βE
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and collisions, asymmetry of mode distribution becomes
dominant and unstable mode disappears (Fig. 1(c)). Parallel
current does not make large effects on the modes distribution
in the complex frequency space (Fig. 1(d)).

The effects of the pressure gradient, parallel current, and
collisions on TAE radial mode structure are shown in Fig.
2(a) ~ (c). With parallel current, m = –2 electric field becomes
larger compared with other cases.

4.2 Analysis of internal kink mode

Internal kink mode is analysed with q0 = 0.7 and qa = 3.
In Fig. 3, the internal kink mode corresponts to the hollow
point in f ~– 0.08i MHz. And the displacement of the mode is
shown in Fig. 4.

In Fig. 5, the dependence of the internal kink growth
rate γ on pressure is compared with the formula obtained by
An. Martynov et al. [4]:

γ τ A = 0.5ε1(κ 1 – 0.5)

× β bu – 0.5 –
ε 1
ε a

(κ 1 – 1.5 |δ 1 + 0.04|)

(1.23 – 1.26ε1)

(26)

where τA is the Alfvén time, βbu = 2µ0(〈p〉1 – p1)/B2
pl is the so-

called beta Bussac, 〈p〉1 is the volume-averaged pressure over
the inside of the q = 1 surface, p1, Bpl, ε1, κ1, δ1 are the
pressure, poloidal magnetic field, inverse aspect ratio,
elongation, and triangularity on q = 1 surface. εa is the inverse
aspect ratio on plasma edge. In the pressent calulations, ε1 =
0.12, εa = 0.33, κ1 = 1, and δ1 = 0. Though the slope of
growth rates obtained by TASK/WA is coincident with Eq.
(26), and the minimum point of TASK/WA (βbu = 0.168) is
almost coincident with 0.161 obtained from Eq. (26), γ τA

differs by about 0.017 for wide rage of βbu. This discrepancy
may be attributed to the other destabilizing mechanism such
as parallel current, but not yet understood well.

5. Conclusions

We derived the dielectric tensor including the effects of
pressure gradient, the parallel current, and the collisional
friction.

These effects in the TAE and the lower frequency region
are investigated using the code TASK/WA. With pressure
gradient, two new symmetric branches appear in the region
of Re(f ) < 0.1 MHz (Fig. 1(b)). Because the effects of
continuum damping and radiative damping are not included
in the dielectric tensor, quantitative analyses of the damping
rate is out range of the present study.

While the parallel current does not make large effects on
the mode distribution in the complex frequency space, mode
structure is strongly affected and m = –2 electric field becomes
larger compared with the cases without the parallel current.

The growth rate of the internal kink mode obtained by
TASK/WA is compared with the previous computation result
Eq. (26). The relative dependence of the growth rate on the
pressure βbu agrees well with each other, but the positive offset
of the growth rate may be attributed to some destabilizing

Fig. 5 Growth rate of internal kink mode as a function of βbu.
Growth rate obtained by TASK/WA (solid line) and Eq.
(26) (dotted line).

Fig. 4 Displacement in x-direction for internal kink mode (q0 =
0.7, qa = 3)

Fig. 3 Contour map of [log(∫ |E |2dV)]–1 as a fuction of complex
frequency for internal kink mode (q0 = 0.7, qa = 3)
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mechanism such as parallel current, which is left for further
study.
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