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Abstract

A module for the three dimensional (3D) ideal magnetohydrodynamic (MHD) code TERPSICHORE has been
formulated and implemented to investigate the driving and stabilising mechanisms associated with global and local
ideal MHD modes in 3D magnetic confinement systems. The energy principle that describes the MHD stability
behaviour is expressed as δWP = (1/2) ∫ ∫ ∫ d3x (C 2 – D|ξs|2), where C 2 is the stabilising element due to the compression
and bending of magnetic field lines, whereas the instability driving term is D|ξs|2 which can be separated into two
components. One of these components is proportional to the pressure gradient responsible for local ballooning and
Mercier modes. The second component is proportional to the parallel current density j·B/B2. This term is responsible
for global internal and external kink modes. However, in finite β plasmas, the surface varying component of  j·B/B2 is
proportional to the pressure gradient. Although this could complicate the distinction between ballooning and surface
varying parallel current driven kinks, it is found that the perturbed energy structures each generate are different in
character. In addition, the average and surface varying contributions of  j·B/B2 to δWP can be evaluated separately.
Applications to a currentless 10-period Heliotron demonstrates that the ballooning-interchange mechanism is dominant
in destabilising ideal MHD modes. In a 2-period quasiaxisymmetric device with finite bootstrap current, the kink
mode mechanism driven by the surface varying component of j·B/B2 is dominant near marginal stability.
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1. Introduction

Ideal magnetohydrodynamic (MHD) instabilities impose
limits on the β value that can be achieved in magnetically
confined plasmas. The bending and compression of field lines
balance the interaction of the pressure gradient with the
magnetic field line curvature that drives ballooning-
interchange modes and the parallel current density that drives
internal and external kink modes. A diagnostic code is
developed to analyse the driving and stabilising terms of the
internal plasma potential energy δWP. The driving terms can
be separated into pressure gradient ballooning-interchange
δWD and parallel current density δWJ contributions. The
Pfirsch-Schlüter current is related to the flux surface varying
component of the parallel current density and is proportional
to the pressure gradient. A finite flux surface average component
of the parallel current density is a consequence of bootstrap
(BC), ohmic (OH) or electron cyclotron current drive (ECCD)

currents. A rough identification of Pfirsch-Schlüter driven kinks
and kink modes driven by BC, OH or ECCD is undertaken
by suppressing the contribution of one or the other in δWJ.
Applications to a 10-period currentless Heliotron [1] and a 2-
period quasiaxisymmetric (QAS) [2] stellarator reactor with
finite bootstrap-like current are investigated.

2. The components of the energy principle

The incompressible ideal MHD stability problem is
reduced to the solution of the equation δWP + δWV – ω2δWK

= 0, where δWP is the internal plasma potential energy, δWV

is the energy in the vacuum region surrounding the plasma,
–ω2δWK is the kinetic energy and ω2 is the eigenvalue. In
Boozer magnetic coordinates [3], expressions for δWP, δWV

and δWK described in Ref. [4] have been implemented in the
3D TERPSICHORE stability code [5]. The driving terms of
δWP can be separated into a pressure gradient p′ component
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The stabilising contribution then is extracted by evaluating
δWC2 = δWP – δWD – δWJ and must be verified to be positive-
definite everywhere. The flux surface averaged component of
j·B/B2 is given, as calculated in a Boozer magnetic coordinate
reference frame by the expression [J(s)I′(s) – I(s)J′(s)]/
[ψ′(s)J(s) – Φ′(s)I(s)] = ( j·B/B2)00, where J(s) and I(s) are
the toroidal and poloidal current flux functions, respectively
and Φ (s) and ψ (s) are the toroidal and poloidal magnetic flux
functions, respectively. Primes (′ ) indicate derivatives with
respect to the radial variable s. By suppressing the flux
surface varying component of j·B/B2 associated with the
Pfirsch-Schlüter current, we can estimate the impact of
bootstrap, ohmic or ECCD currents to the kink driving term
by evaluating
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The difference between δWJ and δWJ0 yields an estimate of
the impact of the Pfirsch-Schlüter current as a driving
mechanism for kink modes.

3. Application to currentless 10-period

Heliotron

We analyse the different contributions to the Energy
Principle in a current-free 10-period Heliotron [6]. The
profiles for δWP, δWC2, δWD and δWJ are shown in Fig. 1 for
a case with β –~ 2%. The ballooning-interchange driving
mechanism δWD dominates over the parallel current driving
mechanism δWJ for the most unstable mode of the system, a

Fig. 1 The stabilising (δWC 2), the internal plasma potential
energy (δWP), the kink (δWJ) and the ballooning-
interchange (δWD) profiles in a currentless 10-period
Heliotron. The curves labelled from top to bottom are
δWC2, δWP, δWJ and δWD, respectively.

m/n = 3/2 structure. As anticipated, the stabilising δWC2 term
is positive everywhere. We have also verified that the
reconstructed δWP profile reproduces exactly the profile
calculated spectrally in the TERPSICHORE code. An analysis
of the full 3D distribution of the different components of the
Energy Principle is also instructive. We present the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

0

5
x 10

4

S

δ 
W

D
 , 

δ 
W

J , 
δ 

W
P
 , 

δ 
W

C
2

δ W
C

2

δ W
P

δ W
J

δ W
D

Fig. 2a The structure of the integrands of the functionals δWD

(top) and δWJ (bottom) for a 10-period currentless
Heliotron on a toroidal cross section at the beginning
of a period (φ = 0). The scale for δWD is –2.6 × 10–3 <
δWD < 7 × 10–4 and the scale for δWJ is –1.4 × 10–3 < δWJ

< 7 × 10–4.
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distributions of integrands of the functionals δWD and δWJ in
Figs. 2a–c on cross sections at the beginning, at one quarter
and at midperiod. The most negative regions of δWD

concentrate at the tips of the elliptic cross sections
corresponding to the locations where the magnetic field line
curvature is most destabilising. This characterises the mode
structure as ballooning. The most negative regions of δWJ

concentrate at the inner edge of the torus and are a factor 2
smaller that δWD. Though the Pfirsch-Schlüter current is
formally proportional to p′, the δWJ structure it drives does
not display ballooning features. The observations made
suggest where to physically position fluctuation detectors to
identify the type of mode. In practice, heliotron systems like
LHD [1] display finite currents due to neutral beam and

Fig. 2b The structure of the integrands of the functionals δWD

(top) and δWJ (bottom) for a 10-period currentless
Heliotron on a toroidal cross section at one quarter of
a period (φ = π /20). The scale for δWD is –2.6 × 10–3 <
δWD < 7 × 10–4 and the scale for δWJ is –1.4 × 10–3 < δWJ

< 7 × 10–4.

Fig. 2c The structure of the integrands of the functionals δWD

(top) and δWJ (bottom) for a 10-period currentless
Heliotron on a toroidal cross section at midperiod (φ =
π /10). The scale for δWD is –2.6 × 10–3 < δWD < 7 × 10–4

and the scale for δWJ is –1.4 × 10–3 < δWJ < 7 × 10–4.
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Fig. 3 The profile of the different components that contribute
to the energy principle δWP (the curves shown from top
to bottom are δWC2, δWD, δWJ0 and δWJ, respectively) in
a 2-period QAS reactor with finite bootstrap-like
current.

Fig. 4 The profiles of δWD, δWJ and δWJ0 in a 2-period QAS
stellarator reactor with toroidal currents of 3.78 MA and
5.39 MA. The curves shown from top to bottom
correspond to 1) (δWD, 5.39 MA), 2) (δWD, 3.78 MA), 3)
(δWJ0, 3.78 MA), 4) (δWJ, 3.78 MA), 5) (δWJ0, 5.39 MA)
and 6) (δWJ, 5.39 MA), respectively.
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bootstrap effects. The impact of these currents will be
addressed in future work.

4. Application to 2-period QAS with

finitetoroidal current

We investigate a sequence of equilibria at β –~ 4.25%
computed with VMEC [7] with a fixed hollow bootstrap-like
toroidal current profile that model a 2-period QAS stellarator
reactor in which the magnitude of the current is varied
arbitrarily. The formulation is valid also for peaked currents
from neutral beam injection or ECCD in as much as the
current profile and magnitude are prescribed as input to the
VMEC code which computes selfconsistent equilibria. This
procedure, in turn, affects the δWJ and δWJ0 distributions
when the stability is investigated using TERPSICHORE.
However, we have not examined peaked current profiles in
this paper. The bootstrap current causes the rotational
transform profile to cross the critical ι = 1/2 resonant surface
whent the toroidal current approaches 3.8 MA and an external
m/n = 2/1 kink becomes destabilised. The profiles of δWP,
δWC2, δWD, δWJ  and δWJ0 are shown in Fig. 3 for a case with
3.78 MA toroidal current. The configuration is weakly
unstable and driven primarily by the Pfirsch-Schlüter current
because δWJ is dominantly negative and an order of
magnitude larger than δWJ0. Surprisingly, on average the
ballooning-interchange drive δWD is positive, thus stabilising.
Locally though, it is negative in regions of destabilising
magnetic field line curvature. In Fig. 4, we display the profiles
of δWD, δWJ  and δWJ0 for the weakly unstable 3.78 MA
current case and for a more strongly unstable 5.39 MA current
case. It is seen that for higher currents that the contribution
of the BC to the kink driving mechanism becomes more
important and almost comparable in magnitude to that of the
Pfirsch-Schlüter current.

5. Summary and conclusions

A diagnostic routine has been developed to analyse the
stabilising and destabilising contributions to the ideal MHD
Enery Principle using the eigenfunctions computed with the
3D TERPSICHORE code. The driving term can be separated
into contributions from the parallel current density, which is
responsible for kink modes, and the pressure gradient, which
is associated with ballooning and interchange modes. The
parallel current density contribution can be roughly separated
into a Pfirsch-Schlüter term (which is proportional to the
pressure gradient but does not generate a ballooning structure)
and a flux surface average term associated with finite

bootstrap, ohmic or ECCD currents. Test applications have
been performed on a 10-period current-free Heliotron and on
a 2-period QAS stellarator reactor with a fixed model
bootstrap current profile and current magnitude that is
adjusted arbitrarily. In the currentless Heliotron, the
ballooning-interchange driving mechanism dominates that of
the Pfirsch-Schlüter current. Furthermore, the ballooning-
interchange destabilising energy concentrates in the region of
weak magnetic field line curvature at the tips of the elliptic
flux surfaces. The energy in the sub dominant Pfirsch-Schlüter
current contribution localises at the inside edge of the torus.
In the finite current QAS system investigated, the ballooning-
interchange contribution is globally stabilising. The Pfirsch-
Schlüter current contribution constitutes the main destabilising
mechanism near marginal stability. For higher toroidal
currents, the bootstrap current contribution to destabilise the
kink mode becomes more important and can be quantified
through the evaluation of the functional δWJ0. The different
locations within the plasma where the unstable contribution
of the kink driving term δWJ and the ballooning-interchange
driving term δWD concentrate can provide a very useful
indicator of the type of unstable mode that can be detected
from an experimental viewpoint.
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