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Abstract

Strongly localized plasma structures with large pressure inhomogeneities (such as plasma blobs in the scrape-off-
layer (SOL)/shadow regions, pellet clouds, Edge Localized Modes (ELMs)) observed in the tokamaks, stellarators and
linear plasma devices. Experimental studies of these phenomena reveal striking similarities including more convective
rather than diffusive radial plasma transport. We suggest that rather simple models can describe many essentials of
blobs, ELMs, and pellet clouds dynamics. The main ingredient of these models is the effective plasma gravity caused
by magnetic curvature, centrifugal or friction forces effects. As a result, the equations governing plasma transport in
such localized structures appear to be rather similar to that used to describe nonlinear evolution of thermal convection
in the Boussinesq approximation (directly related to the Rayleigh-Taylor (RT) instability).
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In many cases strongly localized, in the plane perpendi-
cular to the magnetic filed lines, plasma pressure inhomo-
geneities emerge in tokamaks. The examples of such cases
are the plasma blobs in the SOL [1-8], pellet clouds [9,10],
ELMs [11,12]. Even though at first glance they look very dif-
ferent, they all exhibit more convective rather than diffusive
radial transport of a plasma. Similar features of convective
crossfield plasma transport toward the wall were observed
also in stellarators [13] and linear plasma devices [14,15].

Rather detailed experimental study of these phenomena
shows striking similarities between them. For example, the
temporal profiles of ion saturation currents in plasma blobs,
measured by probes, in tokamak SOL [1] and in the shadows
of linear devices [15] look virtually the same. Another exam-
ple is the similarities in probe measurements of plasma blobs
in both L- and H-modes and ELMs, although of relatively
small amplitudes which do not damage the probe, [11].

In this paper we suggest that rather simple two-dimen-
sional (2D) models can describe many essentials of blobs,
small ELMs, and pellet clouds dynamics. The main ingredi-
ent of these models based on an ideal magnetohydrodynam-
ics (MHD) is the effective plasma gravity caused by magnet-
ic curvature, centrifugal or friction forces effects. As a result,
the equations governing plasma transport in blobs, small
ELMs, and pellet clouds appear to be rather similar to those
used to describe nonlinear evolution of the RT instability

1. Introduction [16]. Therefore, it is not surprising that all these plasma
physics phenomena have many similar features.

The paper is organized as follows. In Sec. 2 we review
equations describing blob dynamics in the far SOL [6] and in
the shadows of linear devices [17], as well as discuss the
results of both analytic and numerical solution of these equa-
tions [6,18]. In Sec. 3 we derive equations describing blob
dynamics in the vicinity of the separatrix to account for the
effects of cross-field conductivity [19] caused by a strong
shear of the magnetic field near the X-point [20]. Based on
these equations we are also presenting the estimates of the
blob radial velocity in the region close to separatrix. In Sec. 4
we discuss the equations, which can be used to model main
features of the dynamics of blobs with large plasma beta and
show their similarity to studies of evolution of pellet clouds
[9,10]. We also present some results of numerical modeling
of these equations. In Sec. 5 we discuss the material present-
ed in previous Sections in the contex of the studies of nonlin-
ear evolution of RT instability and summarize our main con-
clusions.

2. Blob dynamics in far SOL of tokamak and

shadow of linear device

In order to explain experimental results [21] of fast radi-
al transport of plasma through the SOL of main chamber a
simple 2D model was suggested in [6]. The main idea of this
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model can be described as follows. Time to time, due to
some nonlinear processes, the plasma blobs (filaments,
extended along the magnetic field lines and seen on visual
diagnostics [3] as a blob) are peeled off from the bulk plasma
and move radially through the SOL toward the wall with high
speed due to ∇B plasma polarization and corresponding E ×
B drift. The plasma density in the blob is much higher that
ambient plasma density in far SOL and comparable to that of
the bulk plasma in the vicinity of the saparatrix. Therefore,
even though blobs are peeled off the bulk not often, their
contributions to plasma energy and particle transport in far
SOL can be dominant. In linear devices the role of ∇B in
plasma polarization can be played by centrifugal force or
neutral wind effects [17]. We notice that this physical picture
of dominant role of blobs in plasma transport in tokamak far
SOL and the shadows of linear devises was later supported
by experimental observations in both tokamaks and linear
devices.

To describe blob dynamics in tokamak far SOL we use
quasi-slab approximation of the outer side of the torus, with x
and y coordinates being radial and poloidal directions and
straight magnetic field lines intersecting material surfaces sit-
uated at distance Lc (with the subscript “c” standing for “con-
nection”) from each other (see Fig. 1). We assume cold ions
and fixed electron temperature (Te) which is uniform and
constant in time. Then in electrostatic approximation from
electron and ion momentum balance equations and ∇·j = 0,
where j is the electric current, we find

where R is the tokamak major radius, n is the plasma density,
B ∝ 1/R is the toroidal magnetic field strength, Ωi is the ion-
cyclotron frequency, c is the light speed, φ = eϕ/Te, e is the
elementary charge, ϕ is the electrostatic potential, d(…)/dt =
∂(…)/∂t + uE × B·∇(…), uE × B = c(B × ∇ϕ)/B2, j|| is the parallel
current.

Assuming low plasma volumetric resistivity and con-
stant plasma density along the magnetic field lines we inte-
grate the equation (1) along parallel coordinate and fine

where j||(1) and j||(2) are the currents to the walls

M and m are the ion and electron masses respectively, 
Cs = (Te/M)1/2, sw = ±1 depending on the orientation of the
wall with respect to the coordinate frame, φw is the potential
of the wall (here we assume φw = const.). For relatively small
fluctuating part of electrostatic potential, |φ| < 1, from (3) we
have j||(wall) = σwenCsφ. Substituting this expression in (2)
we find

where ρs = Cs/Ωi. Equation (4) with the continuity equation

govern blob dynamics in far SOL region (the term in right
hand side of eq. (5) describes plasma leakage to material sur-
face along the magnetic field lines).

In the absence of ambient plasma the eqs. (4) and (5)
allow the solution in the form of traveling wave (blob) [6],

where nb(x) is an arbitrary function, δy is the effective
poloidal width of the blob, and

is the velocity of the blob. For Te ~ 30eV, B ~ 2T, δy ~ 1cm,
Lc ~ qR, where q is the safety factor (~3), from eq. (7) we
find Vb ~ 105 cm/s, which is close to the experimental obser-
vations [1-5].

In the case of linear devices, where there are no magnet-
ic field curvature effects, plasma polarization can be due to
centrifugal force or neutral wind. The later one is related to
asymmetry in neutrals distribution function [17]. The neutrals
coming to the wall from plasma side experienced some plas-
ma-neutral interactions. Therefore, they are hotter than the
neutrals coming from the wall. As a result of this asymmetry,
in the shadow regions of linear devices there is neutral-ion
friction force (neutral wind) even though neutral particle flux
is negligibly small. In a sense, neutral wind is an extension of
thermal force to the semi-collisional situation.

Taking neutral wind effects into account, the analog of
eq. (4) can be written as follows

Fig. 1  Schematic view of the SOL region.
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where ηpolar ~ νiN/Ωi is the plasma polarization factor and νiN

is the ion-neutral collision frequency. Notice that with
replacement ηpolar ~ νiN/Ωi on ηpolar = 2ρs/R the eqs. (4) and
(8) are virtually the same. It explains the similarities of blobs
in tokamak SOL and shadows in linear devices seen in exper-
iments.

Study of blob dynamics governed by eqs. (8) and (5)
shows [18] that the blobs with crossfield scale

(we assume here that δb ≡ δy ~ δy) are very stable structurally
and propagate radially on large distance keeping its shape
intact. Blobs bigger than δ* are the subjects of the RT insta-
bility, which splits them in a few smaller ones. Blobs smaller
than δ* are quickly transformed into mushroom shape with
thin front like structures [8] and their further evolution is sen-
sitive even to weak plasma diffusion.

3. Blob dynamics in the vicinity of separa-

trix

In previous section we analyzed blob dynamics in toka-
mak far SOL where magnetic field lines have a very simple
geometry. However, blobs are peeled off from bulk plasma in
the vicinity of the separatrix (in diverted tokamaks). To
describe blob dynamics there we need to account for geomet-
rical effects of a strong shear of the magnetic field near the
X-point. In [20] it was shown that magnetic shear in the
vicinity of X-point results in dramatic squeezing of magnetic
flux tubes. Figure 2 shows this schematically. The shadowed
regions represent the same flux tube when it passes near the
X-point, from the position 1 in the main SOL, to position 3 in

the divertor leg. Due to a very strong squeezing of the tube in
the vicinity of X-point, its minimal width for standard toka-
mak conditions decreases from ~1 cm around the mid-plane
to less than the ion gyro-radius close to X-point [20]. As a
result, the effects of finite cross-field resistivity, otherwise
small, are strongly magnified [19,22] and play an important
role.

In order to incorporate these effects into our simplified
physical picture of blob dynamics we will use a heuristic
model developed in [19]. The essence of this model is the
substitution of exact solution of penetration of the electrostat-
ic potential into X-point region by an effective boundary con-
dition relating parallel current and potential at the entrance to
the X-point region. To derive this relation, we take into
account squeezing of the flux tube we introduce: a) squeez-
ing function S(r) ≈ exp(−r/LX), wherer is the length along
the magnetic field line and LX is the effective squeezing
length (usually in current large tokamaks LX ~ 103 cm), and
b) the effective wave number of the potential perturbation
K(r) = k/S(r), where k is the wave number at the entrance
into the X-point region. Then, we balance perpendicular, j⊥ =
−iσ⊥K(r)ϕ, and parallel, j|| = −σ||(∂ϕ/∂r), currents via the ∇·j
= 0 equation, ∂ 2ϕ/r2 = −(σ⊥/σ ||)K 2(r)ϕ, where σ⊥ = ω pe

2

νei/(4πΩe
2) and σ⊥ = ω pe

2 /(4πνei) (notation is standard). As a
result, we find a relation between parallel current and electro-
static potential at the entrance to the X-point region [19]

where σeff = Gωpe
2 /(4πΩe), and G is order unity phenomeno-

logical coefficient. Notice that the squeezing of the magnetic
flux tube occurs near the separatrix in both open and closed
flux surfaces and, therefore, the expression (10) can be
applied at both sides from the separatrix.

We can use the relation (10) to close eq. (1) after the
integration along the magnetic field like as we did in Sec. 2,
where magnetic field lines were going through the wall and
we used relation (3) to close eq. (2). For simplicity, we con-
sider only a symmetric double-null divertor, so that eq. (10)
should be applied at both ends of the flux tube (with the obvi-
ous change of the sign). Then, approximating wave number
of the blob at the entrance into the X-point region as k ~ 1/δb

we find

where Lb is the parallel length of the blob. From eq. (11) we
estimate radial velocity of the blob

Thus we find that strong squeezing of magnetic flux tube in
the vicinity of X-point do not prohibit the blob radial motion.
By taking into account effective X-point resistivity [19] we
describe blob motion in the vicinity of the separatrix in both
closed and open magnetic flux surfaces. Moreover, compar-

Fig. 2 Evolution of the cross-section of magnetic flux tube in
the vicinity of separatrix
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ing the expressions (7) and (12) we see that close to the sepa-
ratrix Vb ∝ ρs /δb << 1, while in the far SOL Vb ∝ (ρs /δb)2.
Therefore, it can explain experimental observations [5] of
higher blob velocity in the region close to the separatrix than
in far SOL.

4. Dynamics of blobs with large beta

In previous sections we neglected an impact of blob on
the structure of the magnetic field. However, in case of large
beta of blob plasma, βb, such impact can be very important.
In order to address this issue we estimate the perturbation of
the magnetic field due to the blob motion in a tokamak. In
this case, the plasma polarization current is balanced by par-
allel current dipole

which gives the following magnitude of radial perturbation of
the magnetic field strength, Br,

As a result, the magnetic field line bends in radial direction.
Since bending of magnetic field like propagates along B with
the Alfven velocity VA = B/(4πnM)1/2 such quasi-steady state
approximation of the magnetic field line structure can be
considered if

Then, taking into account the expressions (7) and (12) for
blob velocity, we find from inequality (15):

However, at relatively large βb bending of the magnetic
field lines becomes so strong that the magnetic field line
would “touch” first wall without even going through the
material surfaces of divertor targets or limiters (see Fig. 3).
Taking into account expression (14) from Fig. 3 one sees that
such situation occurs for

where we assume Lb ≈ Lc, ∆w is the distance from last closed
flux surface to the first wall. In order to describe the evolu-
tion of blobs with βb > βcrit within the framework of simple
2D model, we use the approach adopted in the studies of the
dynamics of pellet clouds [9,10]. Introducing the vector
potential A|| and taking into account that the bending of mag-
netic field propagates along the field line with Alfvén speed,
from relation E|| = −∇||ϕ − c-1∂A||/∂t = 0 we find ϕ = (VA/c)A||

and, correspondingly,

Substituting (18) in (2) we have

where the Alfven velocity is calculated with the density of
ambient plasma namb = const. The eq. (19) is just the same as
the equation describing the evolution of pellet clouds in [9,
10]. From eq. (19) it is possible to show that for large blobs,
where inertial term in (19) is small, the velocity of the blob
described by eq. (19) does not depend of its spatial scale and
can be estimated as follows

The results of numerical solution of eq. (19) support estimate
(20). In Fig. 4 we show how seeded blob, described by eq.
(19), coherently moves in the radial direction (R = 175 cm, Lb

= 4000 cm, ρs = 0.06 cm, VA = 4 × 109 cm/s, Cs = 3 × 106

cm/s).

5. Discussions

Thus we find that the blob dynamics in edge plasmas
can be described with rather similar eqs. (8), (11) and (19),
depending on plasma conditions and geometry. In some
sense these equations are similar to the Boussinesq approxi-
mation of 2D thermal convection (related to the Rayleigh-
Taylor instability of a stratified medium)

where T is the temperature, g is the effective gravity acceler-
ation, u = ez × ∇ψ is the velocity, µ is the effective viscosity.
However, “dissipative” terms in right hand side of the blob
equations are different than in (21). In case where dissipation
is not important we see that mushroom shape of originally
circular blob develops (see for example [8,18]) similar to the
typical mushrooms shapes in the dynamics of the RT insta-
bility [16]. But, “dissipative” terms can bring structural sta-
bility of blobs when they propagate on large distance as a

4

Krasheninnikov S. et al., Large Plasma Pressure Perturbations and Radial Convective Transport in a Tokamak

(13)j|| ~ enCs ,ρ
δ b

s

R

Lb

(14)     ~       j|| b ~ b .π δ β
R

Lb

B

Br

c

4

(15)      <~       ~   b .
B

Br

R

Lb

VA

Vb β

(16)Vb < Cs
1/2 .

R

Lbβ b

(17)b > crit ~          ,
Lc

Rβ β
2

w∆

(18)j|| = − 2
⊥ .ϕ

π4 VA

c2

∇

Fig. 3 Strong bending of magnetic field line causes touch of
first wall without intersection of limiters.

(19)+ = −n
dt y

ρs s
∇

φ
∇

∇⊥
⊥ ⊥⋅

⎧
⎨
⎩

⎧
⎨
⎩

d

R

2Cs

Lb

2VA

∂
n∂

namb ρ 2φ ,

(20)
CsCs CsVb VA

Lb

R

Lb

R
β∼ = .

(21)dt∇∇
2ψ ∇ 4ψ+ 0=g

T∂
y∂

µ , ,dtT =⊥⊥

142



coherent structure [6,8,18].
We also find that that dynamics of blobs with high beta

can be described by the same equations as the evolution of
pellet clouds [9,10]. As a matter of fact, this is not surprising
since in both cases we consider the evolution of plasma struc-
tures with the pressure, which significantly exceeds the pres-
sure of a surrounding tokamak plasma. Therefore, this may
be a reasonable model for the studies of nonlinear dynamics
of large pressure perturbations of relatively small spatial
scale when perturbations can be treated like isolated fila-
ments.

One of the examples of such process can be ELM of
small amplitude, when tokamak edge plasma is not perturbed
too much, and isolated features of ELM structure are clearly
seen in the experiment [5,11]. According to our findings
described above, small isolated ELM propagates in convec-
tive manner through the edge and SOL plasmas somewhat
similar to what was observed in experiment [5,11]. This is
different from the results of [23] where early nonlinear stage
of ballooning instabilities was considered and explosive type
of behavior was predicted. It is plausible that early nonlinear
evolution goes with some acceleration and then, in a deeply
nonlinear stage, evolution converges into nonlinear advection
of pressure perturbation which is characterized by more or
less constant speed. Clearly additional studies are needed to
clean this issue up.

The work was performed for the U.S. DoE under con-
tract W-7405-Eng-48 at the LLNL and Grant No. DE-FG03-
00ER54568 at the UCSD.
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Fig. 4  Density contours of blob.
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