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Abstract

The conditions of generation of vortical flows in fusion plasma are reviewed with particular interest for the role
of the small scale vortices in the intermittency events of the internal transport barriers (ITB). Exact solutions are
provided for stationary states.
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1. Introduction

It is a well known fact, supported by experiments and
numerical simulations, that the drift wave turbulence is
accompanied by generation of cuasi-coherent vortical
structures. The aim of this work is to examine the role they
can have in the formation and in the intermittent states of
the transport barriers. Three elements are particularly
relevant in this respect.

First, it is recalled that the drift wave has different
nonlinear dynamics on different space scales [1]. At largest
space scale one finds in numerical simulations the dominance
of the eddies driven by the ion temperature gradient (ITG),
which have large radial extension due to the ballooning
character and linear mode coupling, with a particular
sensitivity to the shear. The Hasegawa-Mima (HM) equation
governs the electron drift waves at the small space scales, of
the order of the drift wave dispersion scale, rs = (Te/mi)1/2/Wi,
where Te is the electron temperature, mi is the ion mass, Wi =
eB/mi is the ion cyclotron frequency, e is the ion charge and
B is the magnetic field. At intermediate space scales the scalar
(or Korteweg deVries) nonlinearity is dominant. Except for
the large ITG eddies (which are well studied numerically),
the two other scales can be satisfactorily described analytical-
ly in closed form and have been the subject of many studies.

Second, the flow structures at mesoscopic scale have a
strong influence on the transport properties [2]. This is an
essential part of the theories aiming to explain the high
confinement barriers by the reduction of the radial correlation
length of the turbulent fluctuations in the presence of a
sheared flow, even if there is not yet an unanimous opinion
on the origin of these flows (ion-orbit losses, Reynolds stress,

poloidal asymmetry, etc). We have found that the nonlinear
drift mode equation has, at this scales, an exact, periodic
solution whose pattern is identical to the zonal flows, with
good agreement with the experimental observations and
numerical simulations. This flow, which naturally suppresses
the radial transport, becomes structuraly unstable when the
vectorial nonlinearity is significant and decays into an
ensemble of vortices with scale close to rs.

The third aspect is derived from the necessity to assess
the role of these vortical structures, generated under the
Hasegawa-Mima nonlinearity in the phase where the barrier
is destroyed (an intermittent event). It is well known from
numerical simulations that an ensemble of vortices (which
are not solitons) evolves by collisions and merging, generat-
ing larger structures from which the ITG eddies may recover.
We are concerned here with the nature of the solutions
consisting of ensembles of vortices. We prove that the
Hasegawa-Mima equation has stationary periodic solutions
consisting of a lattice of vortices. The basic procedure in
this rather technical analysis consists of the mapping of the
HM dynamics to a system of point-like vortices interacting
via a short range potential. This model is formalized in a
field theoretical framework and we search for the states
having a particular property, called self-duality (a minimal
characterization is that they extremize the energy functional).
The outcome of this formalism consists of nonlinear differ-
ential equations which must replace at stationarity the HM
equation, precisely as the sinh-Poisson equation replaces the
Euler equation for the ideal fluids. We prove that these
equations are exactly integrable.
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2. The space scales of the drift instability

We consider the equations of continuity and momentum
conservation for the electrons and ions in two-dimensions [1].
We assume the quasineutrality ni ne and the Boltzmann
distribution of the electrons along the magnetic field line ne

= n0 exp (– —|e|f
Te

). The equation written for vorticity W = — ¥ nnnnn
is d–dt

 (W + Wi) + (W + Wi) (—^ · nnnnn ) = 0. Here —^ is the gradient
operator transversal to the magnetic field.

Using the normalizations t Æ Wit, (x, y) Æ (x/rs, y/rs)
and f Æ ef/Te, the equation for the electrostatic potential f
is obtained
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where nnnnnd
* = –—^ ln n0 – —^ ln Te and nnnnndT = –—^ ln Te. The two

nonlinearities that appear in the equation have different
physical effect. However, they are active on distinct space
scales, as shown by a multiple space-time scales analysis
[3,4]. By introducing a translation velocity u, the equation is
expressed in a moving frame, h = y – ut. One takes xi = e ix
and ti = e it, f = ef1 + e 2f2 + … for e << 1. One space scale is
specified by the choice f1 = f 1 ( x0, x1, x2, …, h0, h1, h2, …,
t0, t1, t2, … ), with the density and temperature variable on
the i = 1 scale. The characteristic space scale for the potential
is then rs which is the typical extension of the dipolar vortex.
The equation obtained in the first order in e, is the Hasegawa-
Mima equation.

A different dynamical equation is obtained on other
space-time scale f = e 2f2 + e 3f3 + … and the density, the
temperature and the velocity u are assumed to vary on the
second (slower and larger) scale. Assuming that 1

2
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2T x

x
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n
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~ O(e 2), the equation on the time scale of order 5 has the
form of the Flierl-Petviashvili (FP) equation.

D = -f af bf 2 (2)
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electron diamagnetic velocity and Ln is the density gradient
length). This equation has been derived by Petviashvili [5] in
a study of the Jupiter’s Red Spot. The dominant space varia-
tion is here on the scale x1 = rs/e which is much larger than
the dipolar vortex scale.

3. The intermediate-scale structures

3.1 The monopolar vortex

The one dimensional form of the equation (2) has been
solved on an infinite domain, obtaining as solution the KdV
soliton [6]. The two dimensional equation has vortical
monopolar solutions, well studied numerically [7,8]. By
defining a functional of the solution expressed in one-
dimensional (radial) geometry and taking the extremum of
the functional under the condition of asymptotic decay,

Petviashvili and Pokhotelov have found the approximate
solution f (r) = 4 8
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to the Flierl-Petviashvili equation is to provide an isolated,
finitely extended vortical solution, obeying boundary condi-
tions at infinity (on the 2D) of smooth decay. There is no
known analytical form for an exact solution.

We consider that the insuccess in determining the
analytical vortex solution has a fundamental motivation. First
of all the equation does not pass the Painlevé test, so it is
very likely that it is not integrable. This, in the definition that
is suggested by the Inverse Scattering Transform method,
means that there is no Lax pair of operators for this equation.
This equation has close ressemblance with some approxima-
tive form of other nonlinear equations, for example the
differential equation Df = exp(f) – 1, known as the Abelian-
Higgs equation (AH), governing the vortices of the supercon-
ducting media. This equation has also been derived by Jacobs
and Rebbi. An expansion of the right hand side Df = exp(f)
– 1 = f – 1–2 f2 leads to something close to the FP equation,
especially because the FP equation has actually been derived
under the neglect of the third order powers of f. We have
proved elsewhere [9] that the AH equation is integrable on
periodic domains and we have provided analytical solutions
in terms of Riemann theta functions. It is a known fact that
equations derived as deformations of exactly integrable equa-
tions preserve some of their properties: solutions are robust
and localised even if they are not exactly solitons. However
it is difficult to give a formal characterisation of this kind of
soft-nonintegrability.

In conclusion we claim that the monopolar vortex of the
FP equation is only a manifestation of the close proximity (in
function space) of an exactly integrable structure, related,
most probably, to the Abelian Higgs model. This implies that
we have to look for vortices at smaller scales, corresponding
to the Hasegawa-Mima equation.

3.2 The exact periodic solution of the FP

equation

In a previous work [10] we have determined an exact
solution of the FP equation. The method consisted in looking
for the trajectories of the one-dimensional solution singula-
rities, in the complex plane of the spatial variables. The exact
solution to the Petviashvilli equation is
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where a, b and s are parameters related by the condition a2 +
b2 = sb/6 and 	 is the doubly periodic elliptic Weierstrass
function. Here w is half of the period on the real axis of 	.

Experimental measurements of the characteristics of the
zonal flow have been performed on Doublet III-D tokamak
[11]. In Ohmic and L-mode plasmas it has been found a
perturbed potential f̃rms >~ 10V and a flow shear wE ¥ B ~ 2 ¥
105 s–1. The value for the radial wavelength is in the range
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krrs Œ [0.1, 0.6] which means lr Œ (15, 30)rs. Due to the
different sensitivity of the solution fs to the parameters, this
set is sufficiently restrictive to determine its form. We have
to take v*/u very close to unity and g3 ~ –1500 which gives:
f̃rms >~ 17V, lr @ 17.4rs, wE ¥ B ~ 2.2 ¥ 105 s–1. The relative
amplitude of the perturbation results ~ 4%. An important
experimental result is the radial spectrum of the perturbation.
We have calculated S (kr) from the Fourier transform of the
correlation of fs(x). The result is very close to Fig. 3 of Ref.
[11], with two symmetric peaks at k0r ~ 4 cm–1. The same
sharp decay for |kr | < k0r is observed, as described in Ref.
[11].

3.3 Linear stability of the stationary periodic

solution

The time variation of the stationary periodic solution is
described by the equation from which the FP equation is
derived at stationarity. We start from the equation with scalar
nonlinearity, with the presence of a temperature gradient
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where 4h2 � 1 – v*–u > 0. To study the stability we take f Æ fs

(x, y) + e (x, y, t), where fs(x, y) is the periodic flow solution
(3). Taking into account the periodicity of the solution we
obtain the Mathieu equation from which one of the dispersion
relations is

(4)

where P = –4h2 + 1–
2

fs|min +  1–
2

fs|max and Q = (dx)2 (fs|max –
fs|min)2. Evaluating the terms, the linear dispersion relation
becomes

which at the limit provides an estimation for the typical length
of fragmentation along the poloidal direction, l^ ~ 2.6rs.

3.4 Relevance for the high confinement

phenomenology

The stability properties change when the polarisation
drift nonlinearity is included, together with the scalar one.
Some perturbations (like, for example, the monopolar vortices
embedded inside a layer) have a very long stability time since
they accomodate with the background flow by reshaping the
distribution of local velocities. However, perturbations that
have a high amplitude relative to the background flow and/or
do not conform to the flow geometry lead to the destabilisa-
tion and eventually destruction of the flow pattern. It is
important however to note that the numerical simulations

(presently with limitted precision) and analytical considera-
tions suggest that the destruction of the flow pattern does not
immediately lead to an arbitrary random field: a fundamental
process is the generation of small (~ rs) space scale vortices.
We can show that the regular flow structure is replaced by a
lattice of vortices which is reminescent of the exact solution
of a closely related nonlinear equation. This solution evolves,
due to the weak interaction between the vortices, to an ensem-
ble of quasi-independent vortices that collide inelastically and
become of various amplitudes plus a surrounding drift wave
radiation. From this random field the ITG instability may
regenerate the structure of eddies and reinstate the transport.

From the numerical simulations showing structural
instability of the FP equation we draw the conclusion that a
more careful study must be done of the small scale vortical
structures arising in the dynamics of the Hasegawa-Mima
equation.

4. The Hasegawa-Mima vortices

The known stable dipolar vortex of the Hasegawa-Mima
equation is the Larichev-Resnik solution consisting of two
monopolar lobes with positive and negative signs. However
this is not an exact solution. We are looking for other possible
vortex solutions. In particular we are interested in the
solutions at stationarity, since the numerical simulations
clearly indicate that large scale vortical structures are created
at late time. There is however an important difficulty in this
approach. The naive stationary form of the HM equation is
extremely general and can be solved by a huge class of
functions. This means that the physics is hardly controlled
and suggests a reformulation of the problem. In the similar
case of the Euler equation, this was possible because the ideal
fluid model is known to be equivalently described as a
collection of point-like vortices moving in plane under the
action of a field whose propagator is the inverse of the 2D
Laplacean [12]. This model leads to the sinh-Poisson equation
for the stationary states.

There is a similar situation for the Hasegawa-Mima
equation. In meteorology it has been developed a model
consisting of the motion in plane of point-like vortices with a
short range interaction potential. We start our analysis from
the basic assumption that the HM equation is equivalent to
this model. In a similar approach as we have developed for
the sinh-Poisson equation, we will formalize this discrete
model as a field theory. In this framework it is possible to
identify an energy functional and in certain situation the
functional takes a particular form, a sum of squares. Then the
extremum is easy to find and results in differential equations
which are simpler than the original equations of motion. This
is a well known physical property in field theory, known as
self-duality.

In developing this approach we face certain multitude of
possible choices, which probably will be better clarified in
future. We are constantly led by the condition to attain the
self-dual states of the system.

The model used by Stewart and Morikawa consists of

91



Spineanu F. et al., Stationary Vortical Structures in Electrostatic Drift Wave Turbulence

4

an ensemble of point like vortices moving in a velocity field.
The local value of the velocity is derived from a vectorial
potential. The later is constructed from contributions of all
the vortices, each contribution being expressed in terms of
the modified Bessel function of the second kind: j = SjwjK0

(|r – rj |) . The vortex motion in plane is given by

d

d

r
nj

t
= -— ¥j ˆ (5)

This means that the vortices are shielded since the modified
Bessel function of the second kind K0 decays exponentially
at large argument.

The interacting N vortices of the Eq. (5) can be described
by a Hamiltonian H = Si> jSjwiwjK0 (|r – rj|). We will construct
a Lagrangean density for this system, keeping in mind that
the major properties must be: (1) short range potential; and
(2) topological nature of the elementary vortices.

The fact that the potential j for the HM equation is a
statistical potential does not clarify definitively from what
source it might be derived, except for the fact that we now
know that the Chern-Simons term must be present in the
Lagrangean. We note however that there are at least two ways
to obtain a short range for the interaction field (gauge field):
(1) include the Maxwell contribution to the Lagrangean
density; the Maxwell term and the Chern-Simons term both
have numerical coefficients and a combination of these
coefficients appears as a mass term in the differential equation
which gives the gauge field. This is a known effect and the
fact that the gauge boson aquires mass by simply considering
Maxwell term in addition to Chern-Simons term is indepen-
dent of the presence of interaction with other (matter) fields.
The latter can simply be represented by a current. (2) By the
Higgs mechanism, a gauge boson aquires mass when the
symmetry is spontaneously broken for a matter field with self-
interaction, after fixing the origin in a vacuum given by a
degenerate minimum of the self-interaction potential. Then
the mass of the boson is dependent on the form of the non-
linear potential.

4.1 From the discrete system of vortices to

continuum

The Lagrangean density must have the standard struc-
ture: gauge field Lagrangean, matter field (sometimes called
in the following the Higgs field) and interaction (between the
matter field f and the gauge field Am. The scalar nonlinearity
is not arbitrary although it leaves certain freedom: we have
to obtain the short range potential and the self-duality. The
second of the method mentioned above for the photon to get
massive and the interaction become short range, can be
realised with only the Maxwell gauge field Lagrangean
density plus the Lagrangean density of the self-interacting
complex scalar (matter) field f

LAH F F D V= - + - ( )1

4

2 2
mn

mn
mf f

where the nonlinear potential is V(|f |2) � l–
4
 (|f |2 – v2)2 (v being

a constant) and Dmf � (�m + ieAm)f. The Lagrangean density
gives the equations � mFmn = Jn where the current source is Jn

� –e2 |f |2 [An – 1
e x

�
� n (Nq )] (N is the integer winding number

of the phase of f). At very large distance, the scalar function
f is close to its asymptotic value, |f |2 = v 2, and the integral
of this current around the boundary contour is Jndxn  =
–e2v 2 Andxn + ev2 � n (Nq) dxn. The gauge potential An allow
to define a magnetic field Bêz = — ¥ A perpendicular on the
plane. For a single vortex we can replace the core by a d
function. Then — ¥ J + e2v 2B = 2pN ev 2d (2) (r)êz. Using the
Maxwell equation — ¥ B = J one arrives at the equation

— ¥ — ¥ + = ( )( )B B ee Ne z
2 2 2 22v vp d r ˆ

This equation has the solution (Nielsen-Olesen)

B = ( )e N K m r zv eV
2

0 ˆ

where the mass of the gauge boson is identified mV � ev =
e|f |•. Generalizing for a number of parallel vortices, with
vorticities of signs na = ±1 the equation becomes

— ¥ — ¥ + = -( )Â ( )B B r r ee e n
a

a a z
2 2 2 22v vp d ˆ

and the solution is

B r e= -( )Âe n K m
a

a V a zv
2

0 r ˆ

From this derivation we learn that the Higgs mechanism
leads to a finite mass for the photon, mV which must be mV �
e|f |• = 1/rs and e = cs.

This model is able to support the self-dual states. For
the explicit form one has to write the squared differential
operator at stationarity as shown by Bogomolnyi

where the spatial part of the current is, as above Jj = 1–
2i

 [f*
(Djf) – f (Djf)*]. The static energy functional e = d2x [ 1–2 B2

+ |Df |2 + l–
4
 (|f |2 – v2)2] is for l = 2e2, e = d2x [E 1

2 + E 2
2]

ev 2B, where E1 � B  e (|f |2 – v2), E2 � |D±f |, and D± � D1 ±
iD2. The self-duality means here the vanishing of the squared
terms plus the condition between the constants of the theory
(implicitely between the masses)

D B e±
Ê
ËÁ

ˆ
¯̃= , = ± -f f0

2 2
v

At this point the energy is bounded from below by the mag-
netic flux e >> v 22pN. We write the complex scalar field f =

÷
-r exp (ic) and then the vanishing of the covariant deriva-

tives D± yields eAj = –�jc 1–
2

 eij�jlnr. This must be substituted
in the equation of B

— = -Ê
Ë

ˆ
¯

2 2 22ln r re v
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With the substitution r = exp (y) (and rescalings) the
self-duality equation becomes

D = ( ) -y yexp 1 (6)

The physical vorticity is obtained as w = |f |2 = r and, in
physical units, r = —2y + Wi. The Eq. (6) can be solved
exactly on periodic domains and gives a lattice of vortices in
plane, which is what the numerical simulations show.

The most general model of a field mediating the interac-
tion of vortices (represented by a density) and which is able
to generate fields with short range and to present self-dual
stationary states is the nonabelian Maxwell Charn-Simons
Higgs theory. The Lagrangean density is

L =
- +

- ( ) ( )[ ] - ,( )

Ê
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Á
Á
Á

1

4 4
F F F A

D D V

mn
mn mnr

mn r

m m

k e

f f f ftr
† †

It has been found that the only possiblity this model has to
reach self-dual states is to choose a scalar field nonlinear self-
interaction given by a sixth order potential V(f, f†) = 

1
4 2k tr

Y †Y) where Y = [[f, f†], f] – v2f and the trace is defined
over the finite dimensional representation of the Lie algebra
to whom A and f belong.

The self-duality equations lead to �+�–ln|f |2 = 2
2k |f |2

(2 |f |2 – v2). After several transformations, with the substitu-
tion ln|f |2 = y the equation becomes

D =y y yexp( )sinh( )3

This equation is also exactly integrable and its solutions
consists of lattices of vortices In Ref. [13] a graphical
representation of the solution of Eq. (6) is provided.

5. Conclusion

Robust vortical structures appear in a transition from
zonal flows to the random field, from which the ITG eddies
may grow again. The possibility of such solution is nontrivial
since they are different of the only known dipolar vortex
(Larchev-Resnik) of the HM equation. We have proved that
such solutions exist at stationarity and we have provided the
particular forms the HM equation takes in this case. The
equations are exactly integrable and exhibit lattices of
vortices.
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