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Abstract

Recently, high-b plasmas with ·b Ò ~ 3 % have been established in two different types of helical devices, namely,
Large Helical Device (LHD) and Wendelstein 7 -AS (W7-AS). These devices are designed with complementary physics
concepts. The purpose of the present work is to theoretically understand the properties of ideal Magneto-Hydro-
Dynamics (MHD) instabilities in those high-b plasmas and to try to explain the experimental results on a common
theoretical basis, namely, the linearized ideal MHD global mode analyses using compressible perturbations. Physically
correct growth rates and mode structures make the direct comparison between theory and experiment possible.
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1. Introduction

In order to investigate the ideal MHD stability in stel-
larator/heliotron, linearized ideal MHD stability analyses
have been performed by assuming that the perturbations or
displacement vectors 

Æ
x in the energy principle form are

incompressible, since the stability criterion of pressure-
driven modes with resonant rational surfaces, determined
only by the sign of the potential energy, does not change
whether the perturbations are incompressible or not.
Moreover, such incompressible analyses have been perform-
ed under the fixed boundary condition, namely the condition
that the normal displacement x s is not allowed on the
plasma-vacuum boundary. These incompressible analyses
under the fixed boundary condition are not so time
consuming that they are suitable to the fast analyses of the
reconstructed MHD equilibria from the experimental data or
analyses based on the theoretically prepared MHD equi-
librium data base. In those incompressible stability analyses,
however, the growth rates do not have correct physical
meaning and the profiles of eigenfunctions are not exact,
because the component of the displacement vector parallel
to the equilibrium magnetic field x || is not included, or more
physically, the branch of the slow magnetosonic is not
included. Therefore, in order to compare between theoretical
and experimental results, to be done firstly from the theoreti-
cal point of view is to perform the MHD stability analyses
avoiding a possible discrepancy between theoretical and ex-
perimental results. For such a purpose, here, ideal compres-
sible MHD analyses are performed under the free boundary

condition, so that physical growth rates and eigenfunctions
can be correctly evaluated.

Recently, high-b plasmas with ·b Ò ~ 3 % have been
established in two different types of helical devices, namely,
LHD [1] and W7-AS [2]. These devices are designed with so
complementary physics concepts as to make two main
different lines in researches of the three dimensional
configurations. In the case of LHD, high b plasmas are
established in the inward-shifted configurations with the
vacuum magnetic axis Rax of 3.6 m, where pressure-driven
modes are theoretically more unstable compared with those
in the standard configuration with Rax = 3.75 m or in the
outward-shifted configurations with Rax ~ 3.9 m, when the
MHD equilibria with same pressure and current conditions
are used by only changing the plasma boundary shape. At
present, the typical high-b MHD equilibria in the inward-
shifted configurations are not rigorously fixed from the
experimental point of view, thus, theoretically chosen MHD
equilibria are used in this work.

The second line of stellarators is represented by W7-AS
and by W7-X. In W7-AS, the maximum b was obtained with
B = 0.9 T, ·b Ò ~ 3.2 % with a flat top time of ~ 0.35 s. Above
·b Ò ~ 2.4 % the Mirnov diagnostic shows the discharge to be
quiescent. In the computational reconstruction of such a dis-
charge (#51755), the rotational transform was found to vary
substantially. In keeping with the experimental measurements,
the low-node-number global ideal MHD modes (dominantly
n = 1) have computationally been found unstable up to ·b Ò ~

45

J. Plasma Fusion Res. SERIES, Vol. 6 (2004) 45–50



Nakajima N. et al., Growth Rates and Structures of MHD Modes in Stellarator/Heliotron

2

2.4 %. Computationally obtained, maximum physical, growth
rate is 14 kHz. Because interchange stability prevails in W7-
X, the present work clarifies the role of local ballooning
stability b limit.

2. Properties of pressure-driven modes in

inward-shifted LHD configurations

To understand the overall properties of pressure-driven
modes in inward-shifted LHD configurations, three MHD
equilibria with ·b Ò = 1 %, 2 % and 3 % are created under
both fixed boundary and currentless conditions by using
VMEC code [3], where 300 radial meshes, and 7 poloidal
and 12 toroidal Fourier modes are used, respectively. The
used plasma boundary is so small that the plasma volume is
around 25 m3 and the rotational transform at the plasma
boundary is around 1.36. The used pressure profile is P (s) =
P (0)(1 – s)(1 – s9), where s is the normalized toroidal flux,
which is related to the normalized minor radius r as r = ÷

-
s .

The rotational transform i and Mercier index DI for ·b Ò =
1 %, 2 % and 3 % are shown in Fig. 1. The i almost
monotonically increases in any cases, and all equilibria are
Mercier-unstable except for plasma periphery. The MHD
equilibria are calculated under the fixed boundary condition,
so that the stabilizing effects by the free boundary motion of
the plasma boundary are reduced, leading to the increase of
DI as b increases. Note that it is considered that the
theoretically chosen MHD equilibria, used here, are more
unstable than experimentally observed ones.

The ideal MHD stability analyses for compressible per-
turbations are performed by the cas3d3 code [4], where 300
radial meshes, 20 poloidal and 20 toroidal Fourier modes in
the Boozer coordinates are used for the mapping of
equilibrium. As a perturbation, 60 Fourier modes are used to
express each component in 

Æ
x^, the component perpendicular

to the equilibrium magnetic field, and 490 Fourier modes are
used for x ||. Note that quite large Fourier space is needed to
correctly express the incompressible properties of the per-
turbations in the compressible calculations [4]. The radial
width of the most unstable mode for each toroidal mode
number n is shown in Fig. 2, where the radial width is roughly
defined as the region that the amplitude of the eigenfucntion
is larger than 70 % of the peak value. The radial width for
the free (fixed) boundary condition is indicated by the solid

(dotted) lines, with the location of the dominant modes shown
by open rectangles (free boundary) and open circles (fixed
boundary), and the location of the dominant low-m rational
surfaces, namely i = 0.4, 0.5, 0.6, 0.75 and 1.0. Since the
MHD equilibria are Mercier unstable, the toroidal mode
coupling inherent to helical systems is so weak [5,6] that the
toroidal mode number n can be used as a good quantum
number. Therefore, to distinguish the unstable eigenvalues by
the radial node number is also possible for both interchange
modes consisting of multiple Fourier modes and ballooning
modes. It is understood that 1) the unstable region moves
from plasma core to plasma periphery as b increases, 2) the
lower the toroidal mode number n is, the wider the radial
width is, and also this tendency becomes clear in low-b
plasmas, 3) the free boundary motions become important for
low-n modes with a global structure under the fixed boundary
condition, and/or for high-b plasmas, and 4) the unstable
radial region does not depend on the toroidal mode number n
so much, leading to the simultaneous excitation of many
linearly independent modes around same radial location. For
more detail, see Fig. 3. The movement of the unstable region
is correlated with the magnetic well formation by the
Shafranov shift. When ·b Ò increases more, the Mercier stable
region appears in the plasma core region. This tendency is

Fig. 1 Radial profiles of i and DI in inward-shifted LHD
plasmas. The solid, short dotted, and long dotted lines
correspond to ·b Ò = 1 %, 2 %, and 3 % respectively.

Fig. 2 Radial width of unstable modes vs toroidal mode
number n in inward-shifted LHD with ·b Ò = 1 %, 2 %,
and 3 %. The solid (dotted) lines correspond to free
(fixed) boundary condition, and Open rectangles (cir-
cles) indicate the location of the dominant Fourier
modes for free (fixed) boundary condition. The location
of the dominant low-m rational surfaces is also shown
by vertical lines with the value of i.
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already reflected on the movement of the unstable region. In
some cases, the dominant modes changes from fixed
boundary condition to free boundary condition, say, n = 2
and 4. Note that in these equilibria, the rational surface with
i = 0.5 always exists inside of the plasma, leading to the
global modes with (m, n) = (2, 1) even for low-b plasma, and
that the dominant poloidal mode numbers are fairly large for
n > 5.

Figure 3 shows the growth rate normalized by the Alfvén
transit time on the magnetic axis: g tA0 and the type of modes.
For low-b case (·b Ò = 1 %), all unstable modes are inter-
change modes with only single dominant Fourier mode.
Except for (m, n) = (2, 1), all modes are localized modes as
is also understood from Fig. 2. As b increases, such inter-
change modes with single dominant Fourier mode change into
localized interchange modes consisting of multiple Fourier
components except for (m, n) = (2, 1) and (m, n) = (4, 2) for,
say, ·b Ò = 2 %. And finally, almost all modes except for low-
n modes change into ballooning modes. There are several
important features: 1) there is a case that low-n global inter-
change modes under the fixed boundary condition change into
ballooning modes under the free boundary condition as b in-

creases, 2) up to around 3 %, the growth rates for a specified
toroidal mode number do not change so much even if b -value
changes, and for typical high-b LHD operation parameters,
the order of the growth rates is around 40 msec (g tA0 = 0.1
corresponds to around 40 msec), 3) the growth rates do not
depend on the toroidal mode number so much, and so taking
account of the the radial positions of the unstable modes in
Fig. 2, many modes may be simultaneously excited around
the same radial location, and 4) for high-b equilibria, free
boundary analyses are inevitable. As an example, the normal
displacement x s of n = 3 mode for ·b Ò = 3 % is shown in
Fig. 4 for both free and fixed boundary conditions. It is
understood that when the free boundary motion of the
perturbation is allowed on the plasma-vacuum boundary, the
Fourier modes near the plasma periphery are excited, leading
to a more global profile. Another interesting point is that the
experimentally observed modes (m, n) = (2, 3) [7], whose
resonant surface is outside of the plasma, is excited near the
plasma periphery.

The radial distributions of the potential energy WP and
kinetic energy WK are shown in Fig. 5 and Fig. 6, respectively,
for the ballooning mode under free boundary condition in Fig.
4. The potential energy is divided into the shear Alfvén term
noted by 1, the fast magnetosonic term by 2 (quite small),
the slow magnetosonic term by 3 (magnified 5 times), the
pressure-driven term by 4, the current-driven term by 5. WP

itself is indicated by 6. The kinetic energy is divided into two
parts: one is due to x || (Wk(x ||)) indicated by 1, and the other
is due to 

Æ
x^ (WK(

Æ
x^)) by 2. WK itself is indicated by 3. The

kinetic energy WK of the unstable modes mainly comes from
the component of the displacement vector parallel to the
equilibrium magnetic field x ||, namely Wk(x ||) >~ WK(

Æ
x^). This

is due to the fact that the incompressibility condition is almost
satisfied except for the mode rational surfaces as shown in
Fig. 5, so that a strong x || is created around the mode rational
surfaces as shown in Fig. 6. This tendency becomes stronger
for interchange modes with an almost uniform amplitude of
the perturbed pressure along the equilibrium magnetic field
line, compared with ballooning modes where the amplitude
of the perturbed pressure is non-uniform along the equilibrium
magnetic field line. In the present analyses, Wk(x ||)/WK(

Æ
x^) ~

4 for interchange modes, and Wk(x ||)/WK(
Æ
x^) >~ 1 for balloon-

ing modes. As b increases or modes become more unstable,

Fig. 3 Normalized growth rates and type of modes vs toroidal
mode number n in inward-shifted LHD with ·b Ò = 1 %, 2
%, and 3 %. The left and right columns correspond to
fixed and free boundary condition, respectively. In the
upper two figures, the open circles, rectangles, tri-
angles denote interchange modes, and the solid
triangles indicate ballooning modes. In the lower two
figures, s–I and m–I means interchange modes
consisting of single dominant Fourier mode and
multiple Fourier modes, respectively, and B means a
ballooning mode. Attached global (local) indicates a
global (local) mode.

Fig. 4 Radial profile of x s for n = 3 under fixed (left) and free
(right) boundary condition in LHD with ·b Ò = 3 %. The
attached numbers indicate the poloidal mode numbers.
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the contribution by x || becomes same as that by 
Æ
x^. Note that,

in usual incompressible treatments, x || component is elimi-
nated in both linear and nonlinear calculations.

In the incompressible perturbations, the counter parts of
the unstable modes are shear Alfvén modes, since the slow
magnetosonic waves are excluded. In contrast with it, the
counter parts of the unstable modes become slow magneto-
sonic waves for the compressible perturbations, since the
shear Alfvén continuum spectrum moves up from the
marginal point [4]. These properties in the stable side of the
ideal MHD spectrum will influence on the point spectra like
Toroidicity-induced Alfvén Eigenmodes, and Helicity-induced
Alfvén Eigenmodes in LHD configuration.

3. High-bbbbb W7-AS discharge

A series of equilibria representing the W7-AS discharge
#51755 has been studied for its ideal MHD properties using
the CAS3D [8] global stability code. All equilibrium pro-
perties referred to below originate from the computational
reconstruction (NEMEC code by S.P. Hirshman, calculation:
courtesy J. Geiger) and match the experimental measurements
according to the quality of the reconstruction. In the discharge
W7-AS #51755 ·b Ò ª 3.1 % was achieved with b (0) ª 7 %
for a flat top time of > 0.1 s [2]. The VMEC flux-surface

cross-sections at ·b Ò ª 3.1 % are shown in Fig. 7. The rota-
tional transform i changes significantly with the plasma-b :
from monotonically increasing towards the plasma edge and
i < 1/2 at b(0) ª 0 to monotonically decreasing with i = 1/2
inside the plasma for ·b Ò > 1 %. Also, i steepens with in-
creasing b . In the global stability analyses (CAS3D, 101
radial grid points, 64 perturbation harmonics, free-boundary,
finite adiabatic index 5/3, non-uniform equilibrium mass
density profile) the m = 2, n = 1 perturbation harmonics
mostly dominate (see Fig. 8 for normal displacements
harmonics at ·b Ò ª 0.84 %). A b -scan of the growth rates is
given in Fig. 9; here, the electron number density was at ne(0)
ª 2.4 ¥ 1020 m–3 at ·b Ò ª 3.1 % (comm. by A. Weller). The
growth-rate peak at ·b Ò ª 2 % is due to the occurrence of i =
5/11 just outside the plasma boundary. The global mode
analysis finds stability beyond ·b Ò ª 2.3 %, which is in
keeping with the measurements that also see very little MHD
activity beyond t = 0.24 s or ·b Ò ª 2.3 % [2].

4. Standard high-mirror W7-X

Global ballooning modes have been studied in the W7-
X standard high-mirror case (see Ref. [8] for the plasma
boundary and Fig. 10 for the flux-surface cross-sections at
·b Ò ª 5 %) in order to understand the meaning of the theore-
tical local ballooning limit, which is ·b Ò ª 5 %. For the high-
mirror cases, |Bmax – Bmin|/(2—

B0) ª 0.1 is the mirror field on
the magnetic axis. With b = 0.08 ¥ T [kV]n[1020]/B0

2[T], a
number density n (0) = 3 ¥ 1020 m–3, a temperature of T(0) =
3 kV, and the magnetic field B0(0) = 2.5 T correspond to b (0)
= 12 % or ·b Ò = 5 % for the profile used. In W7-X equilibria
the rotational transform typically changes only very little with
increasing b , for the standard case 5/6 < i < 5/5. All the
equilibria studied here are locally Mercier stable. In Fig. 11,
the normal-displacement harmonics are shown for an unstable
perturbation at ·b Ò = 6.3 %. Stellarator-type coupling is
important [(m = 14, n = 12) and (m = 20, n = 17)]. With its
many side-bands and the maximum-amplitude regions on the
outside of the torus, the perturbation is manifestly ballooning-
type (101 radial points, 280 mode harmonics). The b -scan of
the growth-rates (compare Fig. 12) shows that all global
stability limits are above ·b Ò = 5 %, the higher poloidal-node-
number perturbations (m = 55) being closest. With low-node-
number global perturbations (m = 14) a global stability limit
of ·b Ò = 6 % is found, which is above the local ballooning
limit.

Fig. 5 Radial profile of potential energy corresponding to Fig.
4. Slow magnetosonic term denoted by 3 is magnified
5 times.

Fig. 6   Radial profile of kinetic energy corresponding to Fig. 4.

Fig. 7 Flux-surface cross-sections for the W7-AS discharge
#51755 at ·b Ò = 3 % (NEMEC by S.P. Hirshman, calcula-
tion: courtesy J. Geiger).
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5. Discussions

It is thought from results on inward-shifted LHD con-
figurations that used fixed boundary MHD equilibria are
considerably more unstable than experimentally observed
plasmas. Therefore, more detail analyses of ideal MHD
instabilities in inward-shifted LHD configurations should be
performed by using the reconstructed MHD equilibria based
on the experimental data, in order to clarify whether ideal

MHD stability theory, as it is, is useful or not. If there still
were discrepancies between theory and experiment for
reconstructed MHD equilibria, then we have to consider the
non-ideal effects like two-fluids effects, nonlinear effects and
so on. Moreover, we have to answer why ideal MHD theory
is not applicable to inward-shifted LHD configurations,
because there are fairly good consistency between theory and
experimental results in W7-AS as shown here and tokamaks.

Related to the discrepancy, if any, the treatment of the
stochastic region surrounding the plasma in the nested flux
surface region is also important issue. In the case of
tokamaks, there is no such a stochastic region basically, and
in W7-AS the connection length in the stochastic region is
so short compared with LHD that such a stochastic region is
treated as vacuum region. In the case of LHD configurations,
however, the connection length in the stochastic region is so
long compared with parallel mean free path of particles that
there is a possibility that a force free ideal or resistive plasma
exists there, which leads to stabilizing effects compared with
vacuum. In order to clarify above problems, comparative
studies among LHD, W7-AS, W7-X and tokamaks are quite
useful, which leads to deeper understanding of the ideal
MHD theory in torus systems.

Fig. 8 CAS3D normal-displacement harmonics of an unstable
essentially m = 2 perturbation versus s in W7-AS
#51755 at ·b Ò = 0.84 %.

Fig. 9 Plasma-b scan of MHD growth rates, g , in W7-AS
discharge #51755. The inset shows perturbed pressure
contours (j = 4�, essentially m = 2, n = 1, ·b Ò = 0.84 %,
compare Fig. 7).

Fig. 10 Flux-surface cross-sections for the W7-X standard high-
mirror case at ·b Ò = 5 % [2].

Fig. 11 CAS3D normal-displacement harmonics of an unstable
low-m perturbation in the standard high-mirror W7-X at
·b Ò = 6.3 %.

Fig. 12 Plasma-b scan of MHD growth rates, g , for the W7-X
standard high-mirror case.
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