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1. Introduction

In ideal MHD the spectrum of the growth rates, g , of
instabilities is difficult to characterize mathematically because
the linearized force operator is not compact [1]. This gives
rise to the possibility of a dense set of accumulation points
(descriptively called the “accumulation continuum” by Spies
and Tataronis [2] though more correctly termed [3] the
essential spectrum).

The continuous spectrum in quantum mechanics arises
from the unboundedness of configuration space, whereas the
MHD essential spectrum arises from the unboundedness of
Fourier space – there is no minimum wavelength in ideal
MHD. This is an unphysical artifact of the ideal MHD model
because, in reality, low-frequency instabilities with | k^| much
greater than the inverse of the ion Larmor radius, ai, cannot
exist (where k^ is the projection of the local wavevector into
the plane perpendicular to the magnetic field B).

Perhaps the greatest virtue of ideal MHD in fusion
plasma physics is its mathematical tractability as a first-cut
model for assessing the stability of proposed fusion-relevant
experiments with complicated geometries. For this purpose a
substantial investment in effort has been expended on devel-
oping numerical matrix eigenvalue programs, such as the
three-dimensional (3-D) TERPSICHORE [4] and CAS3D [5]
codes. These solve the MHD wave equations for perturbations
about static equilibria, so that the eigenvalue w 2 � –g 2 is real
due to the Hermiticity (self-adjointness [6]) of the linearized
force and kinetic energy operators. They use finite-element
or finite-difference methods to convert the infinite-dimen-
sional Hilbert-space eigenvalue problem to an approximating
finite-dimensional matrix problem.

In order properly to verify the convergence of these
codes in 3-D geometry it is essential to understand the nature

Quantum Chaos Theory and the Spectrum of Ideal-MHD

Instabilities in Toroidal Plasmas

DEWAR Robert L., NÜHRENBERG Carolin1 and TATSUNO Tomoya2

Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200, Australia
1Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald IPP-EURATOM Association, D-17489, Greifswald, Germany

2Institute for Research in Electronics and Applied Physics University of Maryland, College Park, MD 20742-3511, USA

(Received: 9 December 2003 / Accepted: 30 April 2004)

Abstract
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of the spectrum – if it is quantum-chaotic then convergence
of individual eigenvalues cannot be expected and a statistical
description must be used.

It is the thesis of this paper that the language of quantum
chaos [7] theory indeed provides such a statistical framework
for characterizing MHD spectra in that it seeks to classify
spectra statistically by determining whether, and to what
degree, they belong to various universality classes.

In the cylindrical case the eigenvalue problem is separa-
ble into three one-dimensional (1-D) eigenvalue problems,
with radial, poloidal, and toroidal (axial) quantum numbers l,
m, and n, respectively. It is thus to be expected a priori that
the spectrum will fall within the standard quantum chaos
theory universality class for integrable, non-chaotic systems
[7]. In particular, it is to be expected that the probability distri-
bution function for the separation of neighboring eigenvalues
is a Poisson distribution. However, the nature of the MHD
spectrum is quite different from that of the typical quantum,
microwave and acoustic systems normally dealt with in
quantum chaos theory and it is necessary to test this con-
jecture by explicit calculation. In fact we find that the result
depends on the method of regularization.

We first present the eigenvalue equation for a reduced
MHD model of a large-aspect-ratio (effectively cylindrical)
stellarator. We study a plasma in which the Suydam criterion
[8] for the stability of interchange modes is violated, so the
number of unstable modes tends to infinity as the small-
wavelength cutoff tends to zero. To compute large-m
eigenvalues we transform to a Schrödinger-like form of the
radial eigenvalue equation [9], which has essentially the same
form in configuration (r) space as in Fourier (kr) space, thus
allowing easy regularization by restricting the kr domain. To
simplify even further we approximate the effective potential
by a parabola, thus yielding the quantum harmonic oscillator
equation, solvable in parabolic cylinder functions [10].

Real, finite-aspect-ratio stellarators are fully 3-D and
their ideal-MHD spectra may be expected a priori to fall
within the universality class appropriate to time-reversible
quantum chaotic systems, where the spectral statistics are
found to be the same as for a Gaussian orthogonal ensemble
of random matrices [7] in regions where ray tracing reveals
chaotic dynamics [11]. At the end of this paper we give a
brief report of 3-D calculations peformed with the CAS3D
code on a Mercier-unstable, high-mirror-ratio, high-iota equi-
librium representing a Wendelstein 7-X (W7-X) stellarator
variant [12].

2. One-dimensional model eigenvalue

equation

In this paper we study an effectively circular-cylindrical
MHD equilibrium, using cylindrical coordinates such that the
magnetic axis coincides with the z-axis, made topologically
toroidal by periodic boundary conditions. Thus z and the
toroidal angle z are related through z � z/R0, where R0 is the
major radius of the toroidal plasma being modeled by this
cylinder. The poloidal angle q is the usual geometric

cylindrical angle and the distance r from the magnetic axis
labels the magnetic surfaces (the equilibrium field being
trivially integrable in this case). The plasma edge is at r = a.

In the cylinder there are two ignorable coordinates, q and
z, so the components of xxxxx are completely factorizable into
products of functions of the independent variables separately.
In particular, we write the r-component as

r m n rrx q z j= - ,exp( )exp( ) ( )i i (1)

where the periodic boundary conditions quantize m and n to
integers and we choose to work with the stream function j (r)
� rxr (r).

Since the primary motivation of this paper is stellarator
physics, we use the reduced MHD ordering for large-aspect
stellarators [13,14], averaging over helical ripple to reduce to
an equivalent cylindrical problem [15,16]. The universality
class should be insensitive to the precise choice of model as
long as it exhibits the behavior typical of MHD instabilities
in a cylindrical plasma, specifically the existence of inter-
change instabilities and the occurrence of accumulation points
at finite growth rates.

Defining l � w 2 we seek the spectrum of l-values
satisfying the scalar equation

L Mj l j= (2)

under the boundary conditions j (0) = 0 at the magnetic axis
and j (1) = 0, appropriate to a perfectly conducting wall at
the plasma edge (using units such that r = 1 there).

The operator M = –—2
^ and L is given by

(3)

where G is a Suydam stability parameter (> 1/4 for instability
[8]), proportional to the pressure gradient p¢(r) and the
average field line curvature [14].

In this paper we use the notation
·
f � rf ¢(r) for an

arbitrary function f, so j � rdi/dr is a measure of the magnetic
shear and i measures the variation of the shear with radius.

We observe some differences between eq. (2) and the
standard quantum mechanical eigenvalue problem Hy = Ey.
One is of course the physical interpretation of the eigenvalue
– in quantum mechanics the eigenvalue E � -hw is linear in
the frequency because the Schrödinger equation is first order
in time, whereas our eigenvalue l is quadratic in the fre-
quency because it derives from a classical equation of motion.

Another difference is that eq. (2) is a generalized eigen-
value equation because M is not the identity operator. This is
one reason why it is necessary to treat the MHD spectrum
explicitly rather than simply assume it is in the same univer-
sality class as standard quantum mechanical systems.
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Equation (2) is very similar to the normal mode equation
analyzed in the early work on the interchange growth rate in
stellarators by Kulsrud [15]. However, unlike this and most
other MHD studies we are concerned not with finding the
highest growth rate, but in characterizing the complete set of
unstable eigenvalues.

Suydam instabilities occur only for values of m and n
such that n – mk vanishes. For the 1-D numerical work in this
paper we use a parabolic transform profile k = k0 + k2r2 as
illustrated in Fig. 1.

Given a rational fraction m = nm/mm in the interval [k(0),
k(a)]  (where nm and mm are mutually prime) there is a unique
radius rm such that k (rm) = m. Any pair of integers (m, n)m,n �
(n mm, n nm), n = 1, 2, 3, … satisfies the resonance condition

n m rm n m n m, ,- = .k ( ) 0 (4)

We use a broad pressure profile that is sufficiently flat
near the magnetic axis that the Suydam instability parameter
G goes to zero at the magnetic axis, and for which p¢ vanishes
at the plasma edge. The resulting G-profile is shown in Fig.
2.

Defining a scaled radial variable x = m(r – rm)/rm, we
can find the large-m spectrum of eq. (2) by expanding all
quantities in inverse powers of m, and equating the LHS to
zero order by order.

In this paper we work only to lowest order in 1/m, the
Suydam approximation. As found by Kulsrud [15], we have
the generalized eigenvalue equation

L( ) ( ) ( ) ( ) ( ) ( )0 0
2

2
0 0 0 0 0j l jm� - = ,Ê

Ë
ˆ
¯

r

m
L M (5)

where, more explicitly,

(6)

with G 2 � –l(0)/ j2 and j and G evaluated at rm. Under the
boundary conditions as j (0) Æ 0 as g Æ ±•, eq. (5) can be
solved to give a square-integrable eigenfunction, with growth
rate g = jG, provided l(0) < 0 is one of the eigenvalues lm ,l.
The radial mode number l = 0, 1, 2, … denotes the number
of nodes of the eigenfunction j (0) � j m ,l (r). Note that lm ,l

depends only on m = n/m and is otherwise independent of the
magnitude of m and n.

Restricting attention to unstable modes, so that g �
(–l)1/2 is real, we transform eq. (5) to the Schrödinger form
[9]

d

d

2

2 0
y

h
h y+ = ,Q( ) (7)

where

Q G� - - - ,1
4

1
4

2 2 2sech h hG cosh (8)

with h defined through x � g sinhh/ j (rm), and y � (coshh)1/2

j (x).
From, e.g., eq. (4.7) of [9] we see that, provided the

Suydam criterion G > 1/4 is satisfied, there is an infinity of g
eigenvalues accumulating exponentially toward the origin
from above (so the l-values accumulate from below) in the
limit l Æ •.

Perhaps less widely appreciated (because m and n are
normally taken to be fixed) is the fact that there is also a
point of accumulation of the eigenvalues of eq. (2) at each
lm, l as m Æ • with l fixed. (Although l(0) is infinitely
degenerate, we can break this degeneracy by proceeding
further with the expansion in 1/m, thus showing that lm, l is
an accumulation point.) Since the rationals m are dense on
the real line, there is an “accumulation continuum” [2]
between g = 0 and the maximum growth rate, g = gmax.

3. Regularization

The accumulation points of the ideal MHD spectrum
found above are mathematically interesting but exist only as
a singular limit of equations containing more physics,
including finite-Larmor-radius (FLR) effects and dissipation,
that regularize the spectrum.

In order to proceed further we need to be explicit about
the nature of this singular limit. As we are primarily con-
cerned with the universality class question, we seek only a

Fig. 1 The rotational transform k(r ) � 1/q (r ) with k0 = 0.45, k2 =
0.2. All distinct rational magnetic surfaces m = n/m are
shown for m up to 10.

Fig. 2 The Suydam criterion parameter G (r ) (solid line), and
the instability threshold 1/4 (dashed line), showing
nearly all the plasma is Suydam unstable.
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minimal modification of eq. (2) that has some physical basis
but makes as little change to ideal MHD as possible. To pre-
serve the Hermitian nature of ideal MHD we cannot use the
drift correction used for estimating FLR stabilization of
interchange modes by Kulsrud [15]. However it is possible
to effect a pseudo-FLR regularization of ideal MHD by
restricting k^ to a disk of radius less than the inverse ion
Larmor radius. In our nondimensionalized, large-aspect ratio
model this implies

( )k krq r2 2 1 2 1+ £ ,/
* (9)

where kr and kq are the radial and poloidal components of the
wavevector, respectively, r* and is the ion Larmor radius (at
a typical energy) in units of the minor radius.

To apply eq. (9) precisely we need to relate kr and kq to
the eigenvalue problem discussed above. From eq. (1) we see
that kq = m/r. We define kr as the Fourier variable conjugate
to r. Fourier transformation of eq. (2) is only practical in the
large-m limit, when modes are localized near the resonant
surfaces r = rm, which is why we have restricted the discussion
to leading order in the 1/m expansion.

Using the stretched radial coordinate x � m(r – rm)/rm we
define kr � mk/rm, where k is the Fourier-space independent
variable conjugate to x. With the substitutions d/dx ik,
x id/dk, and using the fact that kd/dk and (d/dk)k � 1 +
kd/dk commute, eq. (5) transforms to

- + + + -È
ÎÍ

�
��

= .d d

dd
( ) ( )

k
k

k
k jk1 1 02 2 2G G (10)

The transformation k = sinhh then leads back to Eq. (7), with
l now to be interpreted as a distorted Fourier-space
independent variable, rather than as a real-space coordinate !

Equation (9) implies that Eq. (10) is to be solved on the
domain –kmax £ k £ kmax where

k m
r
m

max

r

m
( ) �

Ê
ËÁ

ˆ
¯̃

-
È

Î
Í
Í

�

�
�
�

.

/

*

1 22

1  (11)

This exists provided |m | < mmax, where

m rmax ( )m rm� / .*  (12)

Analogously to quantum mechanical box-quantization we use
Dirichlet boundary conditions at ±kmax.

4. Spectral statistics in the 1-D case

As only the qualitative nature of the spectrum is im-
portant, we approximate the function Q by Q(0) + –

2
1Q
(0)h2,

so eq. (7) can be solved in parabolic cylinder functions [10].
We find the dispersion relation

n + =
- -

-
,/

1
2

2 1
2

2 1 24 1

G G
G( )

 (13)

where n = l in the unregularized case, kmax = hmax = •. In the
even-l, regularized case n may be found by solving for a zero
of M (n/2, 1/2, (4G 2 – 1)1/2 h2

max / 2), where M is Kummer’s
function. For l = 0, n becomes exponentially small as hmax Æ
•, which allows an approximate regularization formula to be
derived.

We study the spectrum between the maximum l = 1
growth rate, gmax(l = 1) � maxm gm,1, and the maximum overall
growth rate, gmax = maxm gm,0. Only the l = 0 modes exist in
this range of g , which corresponds to the range in m between
mmin ª 0.522 and mmax ª 0.628. Throughout this range G is >
1/2, so that Q has a single minimum [9] and the quadratic
approximation of this section is appropriate. In this range
there are only four low-order rationals n/m with m < 10.

Taking r* = 0.001, all pairs of integer values m, n in the
fan-shaped region 1 £ m £ mmax (n/m), mmin £ n/m £ mmax were
evaluated, giving an initial dataset of over 32,000 points (m,
n). The corresponding set of unregularized eigenvalues was
calculated by solving eq. (13) with n = 0 and the eigenvalues
were sorted and numbered from the top to give the integrated
density of states “staircase” function N (g ).

The curve 0.3523 – 9.5733 ¥ 10–11 N2 – 1.1625 ¥ 10–20 N4

was found to give a good fit to the smoothed behavior of this
function. Inverting this function gives the smoothed function
Ñ(g ) which is used to “unfold” [7] spectra by defining a new
“energy eigenvalue” E � Ñ (g ), such that N (E) increases
linearly on average.

This means that the average separation of eigenvalues is
now unity, making comparison with spectra from other
physical systems meaningful and allowing universal behavior
to become apparent if present. However, Fig. 3 shows that
the probability distribution of eigenvalue spacings s is far
from universal for the unregularized Suydam spectrum,
exhibiting a delta-function-like spike at s = 0. This is
presumably because, although we have truncated the spectrum
in m, we have not removed the degeneracies arising for low-
order rationals m in the range mmin < m < mmax.

Fig. 4 on the other hand shows that when a similar
procedure is applied to the regularized spectrum (retaining
only regularized eigenvalues above gmax(l = 1), the universal

Fig. 3 The histogram shows an estimate, based on a data set
of about 32,000 unregularized eigenvalues, of the
probability distribution function for the eigenvalue
separation s. The plot is dominated by the spike at s =
0.
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Poisson distribution expected from a separable system is
obtained to a good approximation, thus leading to the expec-
tation that generic quantum chaos theory is applicable once
any physically reasonable regularization is performed.

Further support for this hypothesis is obtained from a
CAS3D study of a W7-X variant equilibrium with a non-
monotonic, low-shear transform profile (kaxis = 1.1066, kmin =
1.0491, k edge = 1.0754). As seen from Fig. 5, when the

statistics are analyzed within the three mode families the
eigenvalue spacing distribution function is closer to the
Wigner conjecture form found for generic chaotic systems [7]
than to the Poisson distribution for separable systems, as
might be expected from [11]. However, when the spectra from
the three uncoupled mode familes are combined, there are
enough accidental degeneracies that the spacing distribution
becomes close to Poissonian.
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