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Abstract

Oscillations of turbulent transport of particles and energy in magnetically confined plasmas can be easily observed
in simulations of a variety of turbulence models. These oscillations typically involve a mechanism of energy exchange
between fluctuations and a poloidal shear flow. This kind of “predator-prey” mechanism is found to be not relevant
for transport barrier relaxations. In RBM simulations of resistive ballooning turbulence with transport barrier, relaxation
oscillations of the latter are observed even in the case of frozen poloidal shear flow. These relaxations are due to a
transitory growth of a mode localized at the barrier center. A one-dimensional model for the evolution of such a mode
in the presence of a shear flow describes a transitory growth of an initial perturbation. Oscillations in the case of a
finite steady-state shear flow are possible due to the coupling of the mode to the dynamics of the pressure profile.
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1. Introduction

Relaxation oscillations in fusion plasmas have a strong
impact on energy and particle confinement. The most
promising operational regime of future reactors is
characterized by the existence of a transport barrier at the
plasma edge. This barrier is not stable but relaxes quasi-
periodically. During such fast relaxation events, turbulent
transport through the barrier increases strongly and the
pressure inside the barrier drops. Thereafter, the barrier builds
up again on a slow, collisional time scale. These relaxation
oscillations are linked to so called edge localized modes
(ELMs) which are believed to be magneto-hydrodynamical
(MHD) modes driven by the edge pressure gradient
(ballooning) and/or the edge current (peeling) [1].

The basic physical mechanism underlying these kind of
relaxation oscillations is not yet understood. In particular,
there is no explanation why the plasma, in stead of remaining
in a statistically stationary state close to pressure gradient or
edge current stability limits, crosses these limits quasi
periodically.

A possible mechanism for oscillations of turbulent flux
in confined plasmas is based on the dynamics of poloidal
flows that are generated self-consistently by turbulent
fluctuations. These flows stabilize the turbulence. Therefore,
oscillations are in principle possible due to a periodic

exchange of energy between the fluctuations and the poloidal
flow [2,3,4]. In this first part of this article, we will show that
such oscillations can be observed in simulations of resistive
ballooning mode (RBM) turbulence at the collisional edge of
a tokamak plasma. Furthermore, it is possible to construct
one-dimensional or zero-dimensional models for this kind of
dynamics.

However, as we will show in the second part of this
article, relaxation oscillations of transport barriers can be
observed even with frozen poloidal flow. In this case, a steady
state shear flow is imposed externally to generate the barrier,
but the flow does not participate in the dynamics. The
relaxations are due to a transitory growth of a mode localized
at the center of the barrier. Such a transitory growth is found
to be consistent with shear flow stabilization.

2. Model for resistive ballooning

turbulence

Resistive ballooning mode (RBM) turbulence at the
collisional edge of a tokamak plasma is modeled by reduced
resistive MHD equations for the normalized electrostatic
potential φ and pressure p [5,6],

∂t∇2
⊥φ + {φ, ∇2

⊥φ} = –∇2
|| φ – Gp + ν∇4

⊥φ , (1)
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∂t p + {φ, p} = δcGφ + χ||∇2
|| p + χ⊥∇2

⊥ p + S . (2)

Equation (1) corresponds to the charge balance in the drift
approximation involving the divergences of the polarization
current, the parallel current, and the diamagnetic current, and
effects due to a viscosity ν, respectively. Equation (2)
represents the energy balance, where χ|| and χ⊥ are effective
parallel and perpendicular collisional heat diffusivities and
S(r) is an energy source. The curvature operator G arises from
the compressibility of diamagnetic current and E × B drift.
In this MHD model, the diamagnetic velocity is neglected
with respect to the E × B velocity, and the parallel current is
evaluated using a simplified electrostatic Ohm’s law, η||0 j|| =
–∇||φ (in dimensional units), where η||0 is a reference value of
the parallel resistivity.

The system (1, 2) has been normalized using the resistive
interchange time τint and the resistive ballooning length ξ bal

with τ2
int = R0Lp/(2c2

S0) and ξ2
bal = min0η||0 Ls

2/(τintB2
0). Here,

R0, Lp, and Ls are characteristic values of the major radius,
the pressure gradient length, and the magnetic shear length,
respectively, cS0 = [p0/(min0)]1/2 is the sound speed calculated
with reference values of the pressure p0 and the density n0,
mi is the ion mass, and δc = (5/3)2Lp/R0. Time is normalized
to τint and the perpendicular and parallel length scales are
given by ξ bal and Ls, respectively. Electrostatic potential and
pressure are normalized to B0ξ2

bal /τint and ξ bal p0 /Lp ,
respectively.

The geometry of magnetic flux surfaces corresponds to
a set of circular concentric tori, (r, θ, ϕ) being the labels of
minor radius, poloidal and toroidal angles. The Poisson
bracket is {φ, ·} = r–1(∂rφ∂θ  – ∂θ φ∂r), the curvature operator
is G = sinθ∂r + cosθr–1∂θ  and the gradient along field lines is
∇|| = ∂ϕ + q–1∂θ . RBM turbulence is expected to be relevant
in collisional edge plasmas. Assuming a monotonically
increasing safety factor q(r), the domain chosen for the study
of RBM turbulence typically covers a region between q = 2
and q = 3 at the plasma edge.

3. Oscillations with poloidal flow

dynamics

In full three-dimensional numerical simulations of the
system (1, 2), oscillating states can be found where kinetic
energy is periodically exchanged between fluctuating
components ũ

➞
 of the E × B velocity and the poloidal flow –u.

The latter are defined by

–uθ êθ = 〈u➞〉 ,     ũ
➞

 = u➞ – –uθ êθ ,     with     u➞ = u➞E×B

and

π π
θ ϕ〈 ⋅ 〉 = ,∫ ∫ d d

1
4 2

0

2

0

2

π

where êθ  is the unit vector in the poloidal direction. A typical
example is shown in Fig. 1. By performing a proper
orthogonal decomposition [7,8] of the spatio-temporal fields
of velocity and pressure, it is possible to determine the spatial
structures relevant for the dynamics. A subsequent Galerkin

projection then provides a system of ordinary differential
equations for the amplitudes of these structures. Such a
reduced model is given by [2],

a· 0 = – γ 0a0 + γ 0a1a–
1

a· 1 = γ 1a1 – a0a–
1 – ν1a–

1
2a1 – ν2a3

1

a· –
1 = –γ –

1 a–
1 + a0a1 – ν1a2

1a–
1 (3)

Here, a1 and a 1̄ are the amplitudes of the most important
spatial structures of the fluctuations ũ

➞
, and a0 is the amplitude

of the relevant radial profile of the poloidal flow –u. γ 1, γ 1̄,
γ 0 > 0 are linear growth rates, ν1, ν2 are coefficients, and 

is a small parameter. As can be seen in Fig. 2, the system (3)
reproduces qualitatively the oscillations observed in the full
system (1, 2). Note that if one freezes the dynamics of the
amplitude a0, i.e. a·0 = 0, the system always converges to a
stable fixed point. In other words, the dynamics of a0 is
crucial for the oscillating solution of (3) even if the
oscillations of the amplitude a0 itself are not very pronounced.

4. Dynamics of transport barriers

In the RBM turbulence model, a transport barrier can be
generated by externally imposing a locally sheared E × B
flow. This flow locally reduces turbulent transport [9,10,11,
12,13,14]. As a consequence of the total energy flux
conservation, the pressure gradient steepens in the shear layer.
This mechanism is similar to the one observed experimentally
when generating a transport barrier by edge biasing

Fig. 1 Time evolution of the kinetic energy of fluctuations and
poloidal flow in a 3D simulation of RBM turbulence,
initialized with an unstable pressure profile and small
fluctuations.

Fig. 2 Time evolution of two fluctuating modes (a1, a–
1) and

the poloidal flow a0 in an oscillating state.
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[15,16,17]. The external drive of the shear flow is included
by modifying the equation for the poloidal flow profile, ū,
that follows from the magnetic flux surface average of eq.
(1),

∂ = − ∂ + ∂ ∂ − −( ) ,t r r r ru r
r u u r

r u u Uθ θ θ θν µ1 1
2

2 ˜ ˜ (4)

where the first terms on the right hand side correspond to the
divergences of the Reynolds stress and the viscosity stress,
respectively, and the last term has been added artificially to
account for the friction with an external flux U. The latter is
chosen to be strongly sheared at the reference position r0 =
rq=2.5 . In case of a large friction coefficient µ → ∞, the
poloidal flow –uθ  tends to the external flow U. For finite µ,
the Reynolds stress drive of the poloidal flow [18,19,20] is
important.

In typical simulations of RBM turbulence with a
transport barrier, the latter is not steady state but relaxes
intermittently. This can be seen from Fig. 3a where time
evolutions of the edge energy confinement time τEedge(t), the
turbulent flux at the barrier center 〈urp〉(r0, t) and the poloidal
flow shear at the barrier position ∂r

–uθ (r0, t) are presented in
a typical simulation. The edge confinement time is defined as
the ratio of the energy confined in the volume considered and
the total energy flux across a magnetic surface. It represents
a measure for the “strength” of the barrier. As can be seen
from Fig. 3a, the evolution of the confinement time is
characterized by phases of a slow increase quasi periodically
interrupted by rapid crashes. The latter correspond to
relaxations of the barrier and are associated to large peaks of
the turbulent flux at the barrier center as well as fluctuations
of the velocity shear at the barrier position.

These relaxation oscillations persist even if the poloidal
flow profile is frozen. Fig. 3b shows the corresponding results
from a simulation with the same parameters as in Fig. 3a
except that the friction coefficient is set to µ → ∞. In practice,
this is achieved by suppressing artificially the Reynolds stress
term in eq. (4). In this case, the velocity shear profile is
constant in time but intermittent flux peaks with relaxation of
the barrier do appear.

5. Possible mechanisms for barrier

relaxations

As the relaxation oscillations shown in Fig. 3b appear in
the case of a frozen poloidal shear flow, the mechanism of
energy exchange between fluctuations and the poloidal flow
is not relevant for these relaxation oscillations. Other possible
mechanisms can either be excluded or seem to be not relevant:

• As the resistive ballooning instability is a threshold
instability, it could be possible that the growth of a
central Fourier component is triggered when the local
pressure gradient at the barrier position passes a
threshold. However, looking at the time evolution of
this local pressure gradient, it often saturates before
the barrier crash, and no clear sign of passing a
threshold before the event can be observed.

• The strong velocity shear at the barrier center can in
principle generate a Kelvin-Helmholtz instability. In
contrast to the resistive ballooning instability, this type
of instability is independent of the magnetic curvature.
However, if the magnetic curvature is put to zero
during our simulation, all turbulent fluctuations rapidly
die out.

6. Shear flow stabilization

Linearizing the pressure equation (2) for a perturbation
pmn(r, t)eimθ –inϕ, supposing a mean poloidal flow with constant
shear, –uθ  = ωE(r – r0) and replacing the coupling to the
potential equation (1) by an instability term characterized by
a growth rate γ 0, one obtains the linear evolution equation,

∂t pmn + ikθωExpmn = γ 0 pmn – ωtx2pmn + χ⊥∂x
2pmn , (5)

with x = r – r0, kθ  = m/r0, and ωt = χ||/(r0Ls)2, where Ls is the
shear length. The parallel gradient has been evaluated for a
Fourier mode localized at the barrier center ∇|| pmn = ix/
(r0Ls) pmn. In the absence of magnetic shear, one can calculate
analytically the time evolution according to eq. (5) of an
initial perturbation infinitely localized in space and time. A
solution of the equation

Fig. 3 Time evolution of confinement time, turbulent flux at
the barrier center and poloidal velocity shear at the
barrier center. In case (a), the poloidal flow fluctuates
around the imposed flow due to the Reynolds stress. In
case (b), the latter is suppressed artificially and the
poloidal flow is frozen.

(a)

(b)
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∂t pmn + ikθωExpmn = γ 0 pmn + χ⊥∂x
2pmn + Ŝδ(x)δ (t) , (6)

is given by

×

p
S

t

x

t

k x
t

t
t

mn
E

D

= − +
⎛

⎝
⎜

⎞

⎠
⎟

−
⎛

⎝
⎜

⎞

⎠
⎟ ,

⊥ ⊥

ˆ
exp

exp

4 4 2

3

2

0

3

3

χ χ

ω

γ
τ

θi

π

(7)

where τD = [1_
4 χ⊥(kθ ωE)2]–1/3. Note that for ωE = γ 0 = 0, the

usual solution of the diffusion equation is recovered. The
solution (7) describes an initial transient growth of the
perturbation for t < τD before the cubic term in the last
exponential takes over the linear term, leading to a
stabilization. The characteristic time for the transient growth
is large for small values of the perpendicular diffusivity χ⊥

(close to the collisional value at the barrier center) and low
poloidal wave numbers kθ .

For a typical simulation such as the one shown in Fig. 3,
we have τD ~ 10 in normalized units for the central (m, n) =
(5, 2) mode. A transient growth of this mode is found when
starting a simulation with the corresponding pressure and
velocity profiles, a perturbation of the (m, n) = (5, 2)
component and small noise on all other components (Fig. 4).
The peak of the mode amplitude is well reproduced by the
expression (7). The dashed curve in Fig. 4 shows the graph
of pmn = p̂ exp[γ 0t – t3/(3τD

3)], with p̂ = 1.2, γ 0 = 0.42, and τD

= 10.

7. 1D model for oscillations with frozen

shear flow

Considering one dominant (m, n) mode, a reduced
system for the radial dynamics of this mode coupled to the
dynamics of the profiles can be obtained using the
representation

φ φ φ
θ ϕ

p p
r t

p
r t m n

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ , +

⎛

⎝
⎜

⎞

⎠
⎟ , −( )( ) ( ) exp

˜

˜
i i (8)

and a subsequent Galerkin projection of the evolution
equations (1, 2). The resulting system for the fields φ̄, φ̃, p̄, p̃
is simplified further by assuming a fixed relation between φ̃
and p̃ given by the linear mode structure: φ̃ = i(γ 0/kθ )p̃.
Imposing a poloidal shear flow of the form ∂rφ̃ = –uθ  = ωEx, a
1D model is obtained that consists of the equation (5) for the
amplitude of the perturbation p̃ coupled to the dynamics of
the pressure profile p̄,

∂t p̃ = –ikθ ωExp̃ + γ 0(∂t p̄ ) p̃ – ωtx2p̃ + χ⊥∂x
2p̃ (9)

∂t p̄ = –γ 0∂x | p̃|2 + χ⊥∂x
2p̄ + S (10)

In absence of a shear flow (ωE = 0), the system (9, 10) evolves
to a stationary state. However, in the presence of a static shear
flow (ωE > 0) oscillating states can be obtained (Fig. 5).

8. Conclusions

Oscillations of turbulent transport of particles and energy
in magnetically confined plasmas can be easily observed in
simulations of a variety of turbulence models. These
oscillations typically involve a mechanism of energy exchange

Fig. 4 Time evolution of the mode (m, n) = (5, 2) at the center
of the barrier in a full 3D simulation started with a
perturbation of this mode (full line) and analytical
solution calculated from (7) (dashed line).

Fig.5 Time evolution of the rms pressure fluctuations
(∫ p̃2dr)1/2 (a) and the (squared) mean pressure ∫ p̄2dr (b)
according to eqs. (9, 10) with and without imposed
shear flow.

(a)

(b)
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between fluctuations and a poloidal shear flow. In the case of
the RBM turbulence simulations presented here, a OD model
can be constructed systematically that reproduces these
oscillations.

However, the kind of “predator-prey” mechanism
underlying these oscillations is found to be not relevant for
transport barrier relaxations. In RBM turbulence simulations
with transport barrier, relaxation oscillations of the latter are
observed even in the case of frozen poloidal shear flow. These
relaxations are due to a transitory growth of a mode localized
at the center of the barrier. A 1D model for the evolution of
such a mode in the presence of a shear flow describes a
transitory growth of an initial perturbation. The corresponding
time scale is large enough to allow for a significant growth in
the case of low diffusivity and low poloidal wavenumber. This
agrees well with the fact that the mode observed in the full
simulations is located at the barrier center, where the
diffusivity is close to the collisional value, and that its
poloidal mode number is the lowest possible at that position.

The 1D evolution equation for the central mode does not
explain, however, the repetition of relaxation events. After the
initial growth, the amplitude decreases monotonically with
time. In order to construct a model that allows for oscillating
solutions, one has to take into account the coupling of the
mode to the dynamics of the pressure profile. Such a coupled
system of equations shows periodic oscillations in the case of
a finite (steady state) shear flow. These oscillations are
different from the quasi-periodic relaxation events observed
in the full system. A possible way to reproduce these
relaxation oscillations may be to include ambient noise in the
1D system. This work is still in progress.
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