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Abstract
The generalized magnetic coordinates system, which describes magnetic fields with and without

nested magnetic surfaces, is constructed for a simple analytic helical field involving magnetic islands. In
order to analyze magnetic islands, the residue of a tangent map at the fixed points and the Fourier
components of the perturbation of the magnetic field are studied.

Keywords:
generalized magnetic coordinate, GMC, magnetic flux coordinate, magnetic island,perturbation, residue,

resonance, ABC magnetic field, B-spline function

1. Introduction
Magnetic (or flux) coordinates ll,2l are widely

used for the description of magnetically confined
plasma. These coordinates assume the existence of
nested magnetic surfaces, but they do not always exist

because magnetic islands caused by perturbation fields
break down good magnetic surfaces. Besides, there

might be chaotic or stochastic space of magnetic lines of
force. In such cases, the conventional magnetic
coordinates are not constructed. Some efforts on the

generalization of the flux coordinates for the general

magnetic configuration are reported [3].
The Generalized Magnetic Coordinates (GMC) t4l,

which are independent of the existence of nested

magnetic surfaces, have been proposed as a new

supplement to the flux coordinates system [5]. The

GMC are applicable to the general toroidal magnetic

field involving magnetic islands and/or the chaotic or

stochastic magnetic lines of force.

In this paper, the GMC are constructed for a helical

model magnetic field having magnetic islands. We

attempt to investigate the properties of magnetic islands

by using the Fourier components of the perturbation

field obtained in the GMC. For the purpose, the residue

of a tangent map [6,7] at fixed points is computed and

compared with those obtained by field line tracing.

2. Generalized Magnetic Coordinates
The GMC are curvilinear coordinates ((,q,() in

which the magnetic field is expressed as

n=vY(5,4,$xY(+H\€,tDv€xYq, (1)

where the function Y is equal to 45, and the GMC are

constructed on the condition that H€ : 
^[ 

gn€ aoes not de-

pend on the periodical toroidal angle ( { Ueing the Ja-

cobian. The GMC do not use the magnetic surface quan-

tity as a variable of the coordinates as do conventional

flux coordinates.

When the nested magnetic surfaces exist, the

function Y becomes independent of ( and Y(6,n)=
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const. expresses the magnetic surface. If the good

magnetic surfaces do not exist, Y depends on (. We

shall write Y as the (-dependent part and (-independent

part,

Y (|fl,O =V (€,n,O +V (€,D , Q)

where Y((4) is the averaged magnetic surface. The
(-dependent part I is related to the breaking of
magnetic surfaces such as magnetic islands. The GMC
are to be constructed so that Y depends on ( as little as

possible.

3. Analysis of Magnetic lsland
Magnetic islands are caused by resonant radial

magnetic fields on the rational surface where the
rotational transform is equal to a rational value nslms.

The GMC system separates the perturbation V. which
breaks the nested good magnetic surfaces, from the
magnetic field. As a measure of magnetic islands, the

residue is obtained by using the amplitude of the Fourier
mode components of the perturbation separated in the

coordinates resonating with the rotational transform on

the rational surfaces.

Here we introduce the curvilinear coordinates

@,e,0, such that Y= Y(rf), and the magnetic lines of
force without the perturbation Vare straight in the g - (
plane. For the sake of simplicity, we choose V/ so that
dVldy = t(rtr); ttris the toroidal flux.

Then, the equations for the line of force are

expressed as

A-B'vv do -B.ve (A\
E- Bt( d(- B y( ' \''''

The perturbing radial magnetic field Hv is expressed as

(s)

which is expanded in Fourier series as

fr*w,e,o

=28y,.,@l" p{zoi6e-n(t}. (6)

We consider the linear approximation of the field
line in the neighborhood of the rational surface t76 of
rotational transform r = nolmo. If we introduce the

variable Q = moq - no( the equations of the field line

can be written in the Hamilton's form,

dty_ ar dQ_dr
d( -- aa d(- w' (7)

(3)w(6,D=f *r€,r,(ro€,
where the Hamiltonian F is expressed as

F (wQ , = 
mol' (vo) 

(v - vrl' + u (Q\ .

and the potential U is represented as

U (Q) = -l I Uy-r.r,o ( r/o ) exp lik|l ,

R = sin2 lUel .\z )

where the proper frequency rr; is given by

(t)2 = ntot' Q{o)U" (Qo) ,

U'(Qo) =0 '

where the index t is the resonance mode number. The

equation (8) is the expression of the magnetic island.

Then, the residue [6,7] is expressed as

(8)

(e)

(10)

(11)

(r2)

E'(w,e,()

_favav aii,av\ "
= 

f 
;6 a, - 1, ;c)' 'f ''o( '

The fixed point for 0 < R < I is the O-point, and the

fixed point for R > 0, R > I is the X-point. Therefore if
R + 0, then the magnetic islands exist. The existence of
magnetic islands is known by the residue. If the residue

is large, the magnetic island is large.

4. Numerical Example
We use the ABC (Arnold-Beltrami-Childress)

magnetic field in the (xJ,z) Cartesian coordinates as the

model magnetic field,

B, = b cos (2tty) + c sin(2nz),
B u = c cos(2nz) + a sin(2nx),

B.= a cos(2nx) + b sin(2ny) + Bo . (13)

484

This field can express a toroidal asymmetric magnetic



Kurata M. et al., The Analysis of Magnetic Island Using Generalized Magnetic Coordinates

field with period unity. The constant 86 in the toroidal
direction of z is added to be B. > 0 . We use the constant

a = 0.2, b = 0.1 , c = 0.6, and we choose the field param-

eters of Bo = 0.47,0.45 and 0.43, so that the magnetic

islands appear. The difference of B0 influences the size

of magnetic islands.

The Cartesian coordinates are expressed in terms of

G,n,Q as follows:

M+3 M+3 N

x= €+
l=l m=l n=-N

p__,u n,^^ n, (€) B 
^ 

(n) exp (in ( ),

a - rt -to. (14)

where 81, B^ at:e the cubic B-spline function. In order to

treat fields of large variation, the coordinates are ex-
panded in Fourier series in the toroidal direction ( and

the B-spline function, which has local support, is used to

locally follow the variation of the field in the other two

(1)z=0

dimensions.

We set M = 60 as the mesh numbers of (, r7 and (,
and N = 30 as the number of Fourier mode. Figure 1

shows the GMC meshes of (f,4) = const. at equal

intervals constructed for the Bs = 0.47 field on the z = 0,

O.25,0.5,0.75 planes in the Cartesian coordinates. The

Poincar6 map of magnetic field lines is also overlapped

in Fig. l.
The residue calculated by the eq. (10) is compared

with the value obtained by tracing the field line. These

comparisons show very close agreement on both the O-
point and the X-point.

The distribution of Fourier amplitudes lUy,l ot
(m,n) = (5,1), (6,1), (7,1) and (12,2) with respect to the

rotational transform t is shown in Fig. 2 (for the case of
a field with Bo = 0.47). On the rational surface of r = ll
5, ll7 , the fundamental resonance mode is the largest of
all components and there arelarge magnetic islands. On

the rational surface of L= 116, the secondary resonance

mode is larger than the fundamental mode and there are

small magnetic islands of (12,2) mode. The non-
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Fig. 1 GMC meshes and Poincar6 map in the Cartesian coordinates. (1)z = 0 (21 z=O.zS (3) z = 0.5 (41 z=0.75

0.80.4
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Inversc of Rotatioral Trusform c

Fig.2 Distribution of some Fourier amplitudes lH[., 1

with respect to the inverse of r (4 =O.4ll.

resonant modes are broadly distributed, but they do not

contribute to the residue. These characteristics are

common in 86 = 0.47,0.45, and 0,43 fields.

5. Conclusion
A generalized magnetic coordinates system is

constructed on a simple analytic helical field involving

magnetic islands. The residue of the tangent map at a
fixed point is calculated by using the Fourier component

of the perturbation field decomposed by constructing the

coordinates. The magnetic island can be described by
the resonant mode of the Fourier component of the

perturbation on the averaged magnetic surface. The

amplitude of non-resonant modes is sometimes of the

same order of the resonant modes or larger, but it does

not influence on the magnetic island.
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