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Abstract
Global eigenmodes of low frequency waves in a FRC plasma are obtained using MHD model and a

simple equilibrium model (1D). Dispersion relation and radial structure of the global wave fields for the

azimuthal mode numbers m = 0,1 are shown. The results for m = 0 are compared with the results of a low
frequency wave heating experiment. The possibility of ion heating by the transit-time magnetic pumping

is discussed.
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1. Introduction
Low frequency waves have been used for plasma

heating. Recently a heating experiment of a Field-
Reversed Configuration (FRC) plasma has been
performed in Osaka University [1]. In this experiment,

low frequency (compared with the ion cyclotron
frequency in the external magnetic field) oscillating
magnetic field was applied to the FRC plasma. The

applied field was homogeneous in the azimuthal
direction. As a result, a fluctuation of the magnetic field
was observed to propagate in the direction parallel to the

equilibrium magnetic field of the FRC plasma. In
addition, increase of the plasma energy was observed

and comparison of the total temperature and the ion
temperature suggests that the increase in the plasma

energy was mostly due to the increase in the ion
temperature. This implies that the applied oscillating
magnetic field could excite low frequency waves and

the wave energy was absorbed by the ions. In this study

eigenmodes of low frequency waves in a FRC plasma is

analyzed for the azimuthal mode number m = O and l.
The results for m = 0 are compared with the

expenmenB.

2. Eigenmode Analysis
To investigate the low frequency waves

propagating through a FRC plasma, the single-fluid
MHD equations are used:
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Linearizing these equations and assuming that the FRC
plasma has no equilibrium flow, we have 6 independent

equations for 6 perturbed quantities yl and El. Since we

seek waves propagating in the 0 and z-directions with a

global radial extension between the geometric axis and

the conducting wall, the perturbed quantities are as-

sumed to have the following form in the cylindrical co-

ordinate system:

f ,(r, 0, z, t)=/,Q) expfi (m0 + kz - alil] (8)

This leads to an eigenvalue problem where the wave

number k is the eigenvalue and the global wave fields
i-|), ircO), iuQ), Er,e). Eree), E,.(r; are the

eigenfunctions for a given frequency rrl and a boundary

condition at r = 0 (geometric axis) and r - r- (perfectly

conducting wall). The problem is solved in the follow-
ing way. Each eigenfunction is approximated in terms of
a finite series of basis functions p,(r) and a function
which satisfies the boundary condition. For example, ii1,
is expressed as
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Fig. 1 Radial profile of the One-dimensional FRC equilib-
rium for rJr*=9.4, K=0.52.
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Fig. 2 Dispersion relation for m = 0 low frequency
waves.

the ion cyclotron frequency in the external magnetic

field and the wave numbe60 s normalized to 1/r-. The

eigenvalues /c are plotted fot ala,is = 0.015-0.3 in
increments of 0.015. The broken line corresponds to 80

[kHz] which is the frequency of the applied field in the

experiment. The solid line shows the Alfv6n velocity v,a6

based on B, and pnu11 which is the mass density at the

field-null point. We see from Fig. 2 that the eigenmodes

are dense for alk ) y,co and sparse for alk 3 v;r,.

Figures 3 and 4 show the radial structure of the

perturbed electric field, mass flow, and magnetic field of
the eigenmodes along the broken line in Fig. 2

(80[kHz]). The solid gray, solid black and broken black
lines show the r, 0, and z components, respectively. For

a wave with the phase velocity much larger than vle the

amplitude appears only outside the separatrix as shown

in Fig. 3a. Namely this wave propagates in z-direction
only outside the separatrix. As the phase velocity
decreases, the amplitudes move to the inner region (Fig.

3b), and finally the amplitude appears inside the
separatrix for (a/k)/vm = 1.4 (Fig.3c). In all these

modes (Figs. 3a-c), the magnetic field is largest in the

0-direction for r > r,!/r as observed in the experiment.
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where F,,(r) is the function satisfying the boundary con-

dition for 1i1,, and Clu') are the expansion coefficients.

In deriving the equations for the expansion coefficients,

we use the Galerkin method.

One-dimensional FRC equilibrium model known as

the rigid-rotor profile [2], which is homogeneous in 0
and z-direction, is used in this study. The equilibrium
magnetic field and pressure are expressed as

i i ,,(r) = ,,,{rfo cln Q .{r)

Q,t)="or[{, -l)nrlr.]

Bo(r) = B,tanh lr Plttri - 9l

p oe) = p nutfecli lx 
pl'ti - t;]

(e)

(10)

(11)

(r2)

where r, and B, are the separatrix radius and the mag-

netic field at the wall, and K is a parameter. pn,n is the
pressure at the magnetic field-null point. Figure 1 shows

the equilibrium profile for r,/r, = O.4, K = 0.52.

3. Results
3.1 Results for m = 0

The eigenvalue problem was solved for the

azimuthal mode number m = O in the FRC equilibrium
shown in Fig. 1. Figure 2 shows the dispersion relation

for the low frequency waves propagating in z-direction.
The frequency is normalized to cl.r6 : eBnlm;, which is

r,,tr1 y'r'
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Fig. 3 Radial structure of the eigenmodes for m = 0.

These modes may produce the waves observed in the

experiment. While for waves with much smaller phase

velocities, this tendency is not presented. For (a/k)lvo6=
1.76 (Fig. 4a), the amplitudes appear between inside and

outside the separatrix for the electric field and mass

flow, but not for the magnetic field. The magnetic field
propagates only inside the magnetic field-null point r =
r,us a;rd is largest in the z-direction. For more smaller
phase velocities, the amplitudes of the magnetic field
appear both inside and outside the field-null point, and

the number of nodes in the mass flow increases as the

phase velocity decreased (Figs. 4b and 4c).

3.2 Results lor m = 1

Figure 5 shows the dispersion relation for m = l.
Unlike the nt = 0 case, there is no eigenmode for 0.4vo6

< alk < 9va6. Figure 6 shows the radial structure of the

perturbed fields of the eigenmodes along the broken line
in Fig. 5 (95 tkHzl). This frequency is chosen because
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Fig. 4 Radial structure of the eigenmodes for rn = 0.

the wave heating experiment for finite m mode has just
been done recently for the frequency. For (alk)lvoo= 12

the wave propagates almost O.7 < rlr. < I where the
plasma density is very small (Fig. 6a). For (alk)lvo, =
0.37 the mode shown in Fig. 6b appears. The number of
nodes in the mass flow increases as the phase velocity
decreases as observed in the modes with m = 0 for
(alk)/vN < 0.39.

4. Discussions
In the experiment [1], the magnetic fluctuation

measurement was performed only around the separatrix.

The fluctuation in the azimuthal direction, BtB, was

larger than the other components. The phase velocity of
the observed waves is alk - 1-2 x 105 [m/s] and
increases with r.

For the eigenmodes shown in Figs. 3a-c, the
magnetic field is largest in the azimuthal direction. The
mode which propagates near the separatrix has smaller
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Fig. 5 Dispersion relation
waves.
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Fig. 6 Radial structure of the eigenmodes for m = 1.

phase velocity than that propagates away from the

separatrix (The mode in Fig. 3b has smaller phase

velocity than the mode in Fig. 3a, and the mode in Fig.

3c has the smallest phase velocity). This trend is
consistent with the experimental result. The Alfv6n
velocity voo - 105[m,/s] for the experimentsl parameters

B. = 0.04 [T] and fl.o" - fi = 4 x lOre [m-3]. Thus the

phase velocity of the mode in Fig. 3c is alk - 1.4 x 10s

[m/s]. This value is roughly the same as the
experimental result.

For a typical FRC plasma, Ti - 27" and B - L Thus

the thermal velocity of the ions is v,1,; - "'12/3vns -
0.82v1s. The mode in Fig. 4a, whose phase velocity is

similar to vn.i, can have a strong interaction with the

ions. In addition, this mode has significant amplitude of
81, inside the magnetic field-null point r = /,,a. Thus

there is a possibility that this mode heats the ions by the

transit-time magnetic pumpin7 l3l. Averaged change in

kinetic energy of a plasma ion by this mechanism in a

unit time is [4]

(* +) = -" :l: I 
r,,. r(f)(H), 

"=,.
where ,tt. is the magnetic moment of the ions in the

equilibrium magnetic field,/(vo) is the velocity distribu-

tion function. The total change in the ion's kinetic en-

ergy is estimated quite roughly under the assumptions:

(l) Ions inside the magnetic field-null point are heated

for At - 50 its (the wave was applied for about 50 gs in

the experiment); (2) The distribution function is the

Maxwellian; (3) The amplitude of the perturbed mag-

netic field 81. is set to be equal to the amplitude of 816 -
0.008 [T] observed in the experiment, because in the ex-

periment we could not measure the magnetic field far
inside the separatrix. The total change is

I z\
i(rr1,,,(,)t, ( 4 ^ :' 

- 
) - zs u'\dt2l

where l" - 3.6 [m] is the plasma length in z-direction.
This value is comparable to the experimental results (85

Ul), although the estimation is quite rough because the

magnitude of ,B1. is uncertain. However, this result
shows that the transit-time magnetic pumping could
have a significant effect on the ion heating.
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