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Nonlinear MHD Simulations in the Large Helical Device
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Abstract
A new simulation code to solve fully nonlinear, resistive magnetohydrodynamic (MHD) equations in

a full three-dimensional geometry, which has seldom been attempted, is developed to investigate

pressure-driven phenomena in helical devices. Simulations for the geometry of the Large Helical Device

(LHD) show growth and nonlinear saturation ofpressure-driven instabilities. These results show that our

new code is applicable to investigate nonlinear evolution of an MHD plasma in helical devices.
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1. lntroduction
MHD properties of plasmas in helical devices have

been extensively studied so far both analytically and

numerically. However, nonlinear MHD simulations in a

full three-dimensional (3D) geometry of a helical

device, as addressed in this paper, has seldom been

attempted until now, except for a preliminary trial' [1]
Properties of instabilities, the ballooning mode in
particular, are sensitive to the 3D geometry of
equilibrium configuration, such as the local magnetic

curvature and the local magnetic shear. Thus, a two-

dimensional treatment of helical plasmas, such as the

averaging method, is insufficient for complete

elucidation of MHD behaviors. With the remarkable

progless in the recent computer performance, execution

of this kind of time-consuming nonlinear simulation in a

solid configuration became feasible. In this paper, we

develop a new simulation code for helical plasmas based

on Hayashi's code [1], and report some distinct
phenomena observed by using the code. The results

indicate applicability of our code to investigate time-

evolution of various MHD phenomena in realistic

geometry of helical devices.
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2. Simulation Code
Our simulation code solves fully-nonlinear,

compressible and resistive MHD equations in a full 3D

geometry. The equation system is described as
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<D-

where p, u, p, B, j, e;1 and q arc the mass density,
velocity vector, pressure, magnetic field vector, current
vector, (ij) component ofthe strain-rate-tensor and heat
flux, respectively. Symbols q, K, Ir are the resistivity,
conductivity and shear viscosity, respectively. These
dissipative coefficients are assumed to be isotropic
constants.

The MHD equations (l)-(S) are made non_
dimensional by the use of the toroidal Alfv6n time rA

and other quantities in the same manner with the HINT
code [2], which obtains a 3D finite-pressure equilibrium
state. The equations are defined on the..helical-toroidal',
coordinate (ut,u2,u3). Refer to Harafuji et al. [2] on the
coordinate system used in this code, mathematical
expressions for metrics, nature of numerical grids and so

on. Here we set parameters to simulate plasmas in the
LHD geometry [3,4] which is a heliotron type stellarator
with the pitch period number M = l0 and the pole
number I = 2. Behavior of a plasma in the half pitch
period of the torus in the toroidal direction is solved
numerically by imposing the stellarator symmetry to the
system. (The lowest toroidal mode n is 10.) The initial
3D equilibrium solution is computed by the HINT code.
Equations (1)-(8) are discretized by using the fourth-
order central-finite-difference scheme and integrated in
the time direction by the Runge-Kutta-Gill scheme. The
ratio of specific heats is T= 5/3. Control parameters K=
1 x 10-6 and 1t = 2 x l0-3 are fixed throughout this
article. The resistivity \ = 1.73 x 10-6 is also fixed as far
as we do not describe the value explicitly. Number of
the grid points are 97 x97 on a poloidal section and32
in the toroidal direction. Dependency of plasma
behaviors on different 4 values and other informations
should be seen in our next article. [5]

3. Observation of Linear Instabilities
In this section we study growth of linear

instabilities. First, we conduct a simulation (Run-l) for
an initial equilibrium with major radius of the vacuum

magnetic axis R- = 3.7 m in the dimensional quantity
(the major radius of the center of the helical coil of
LHD is 3.9 m) and central beta Bs = 4Vo.ln Fig. 1(a),
the rotational transform (r) of this equilibrium is shown.
A calculation of the specific volume shows that the core
part of the configuration has a property of magnetic well

Fig. 1 (a) Rotational transform. contour plots of (b) ttre
pressure and (c) toroidal current {pfirsch_Schhiter
current) on the horizontally-elongated poloidal
section.

Fig. 2 (a) Evolution of the total kinetic energy in a
nonlinear MHD simulation Run-1. The time was
shifted to the time when the kinetic energy begins
an exponential growth. Contour plots of the
pressure on a (b) horizontally- and (c) vertically_
elongated poloidal sections at f = 1OO0 rr. The
right-hand side of this figure is associated with
the outer side of the the LHD torus,
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while the edge region is magnetic hill. Figures 1(b) and

(c) are contour plots of the pressure and toroidal current

(Pfirsch-schliiter current) on the horizontally-elongated

poloidal section, respectively. Throughout this article,

the outer side of the torus is in the right hand side when

we see contour plots of any quantity. The initial pressure

profile for the HINT computation is given by p (t1r) = (1

- y)2 (peaked profile), where y represents the toroidal

flux function. According to a previous study, this

plasma equilibrium is weakly Mercier-unstable in the

steep pressure gradient region. [6] (Refer also to Chen et

al. [7] for properties of an ideal ballooning instability on

a Mercier-unstable heliotron system)'

In Fig. 2(a), evolution of the kinetic energy

obtained in the Run-1 simulation is shown. The kinetic

energy is integrated over the entire volume. In what

follows we pay our attention to the kinetic energy

because we start from an initial equilibrium with small

perturbed velocity and growth of the kinetic energy

represents growth of an instability clearly. Contour plots

Fig.3Initial condition of a simulation with a flat
pressure profile. (a) Rotational transform, contour
plots of (b) the pressure and (c) toroidal current
on the horizontally-elongated poloidal section.

Fig. 4 Contour plots of the pressure on (a) horizontally-
and (b) vertically-elongated poloidal sections.

of the pressure at t -- 425 r6on the horizontally- and

vertically-elongated poloidal sections are shown in Figs'

2(b) and (c), respectively. Columnar deformations of

contours are observed at a region t = 213' The most

dominant poloidal and toroidal mode number are m = 15

and n = 10, respectively. The largest deformations are

observed in the outer sides of the torus, and they are

clearer in Fig. 2(b) than in Fig. 2(c)' Recall that de-

stabilization effect of the magnetic curvature is the

strongest on the horizontally-elongated poloidal section'

Furthermore, a parameter survey for a range of the

resistivity 1 x 10-6 < n <3.16 x l0-a reveals that the

growth rate depends on the resistivity, roughly

proportional to qt''. [5] These results show that the

instability observed in Figs. 2 is the resistive ballooning

instability.
In Figs. 2(b) and (c), we observe large columnar

deformations in the outer side of the torus. In order to

see a property of instability in other cases, we conduct a

simulation (Run-2) by using a initial equilibrium with a

broader pressure profilep (r1r) = (1 - Vht, magnetic axis

Ro, = 3.7 m and Fo = 4Vo.In Fig. 3, the rotational

transform, contour plots of the pressure and toroidal

current on the horizontally-elongated poloidal section

are shown. Since this equilibrium contains larger

internal pressure energy compared with an equilibrium

shown in Figs. 1 and has the steepest pressure gradient

at the magnetic hill region in the edge, a linear analysis

predicts appearance of unstable interchange instability

rather than ballooning instability with this equilibrium.

In Run-2, an exponential growth and saturation of

the kinetic energy similar to those in Fig. 2(a) is

observed (figure is omitted). The growth rate is slightly

greater than that observed in Run-I. In Fig' 4, contour

plots of the pressure on horizontally- and vertically-

elongated poloidal sections at the time when the kinetic

energy is under its exponential growth are shown'

Deformations of the pressure are observed at a region

t = 0.77, with the most dominant mode being mln =l3l
10. These deformations are observed all around the

plasma core and magnitude of the deformations looks

similar each other. Furthermore, we do not observe clear

difference in the magnitude of deformations between

Fig. 4(a) and Fig. 4(b). Thus an instability which

brought this deformation should be identified as the

interchange instability rather than the ballooning

instability.
Results of Run-l and Run-2 in this section show

that our new code simulates linear growth of ballooning

and interchange instabilities appropriately in consistent
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with previous researches [6,g]. These results, in linear
stage of an instability, are checked with larger number
ofgrid points. [5]

4. Nonlinear Saturation and pressure profile
The advantage of the approach described in this

paper is the capability of tracing the time_evolution
down to the nonlinear stage, in particular the saturation
level of the excited modes. The kinetic energy of Run_l
shown in Fig. 2(a) saturates at , = 1000 z4 due to the
nonlinearity of the MHD equations (l)_(g), and begins
to decrease. Evolution of the kinetic energy of Run_2
also saturates due to the nonlinearity.

In order to see pressure profiles of these two
simulations in their nonlinear stages, birds, eyes views
of the pressure on the horizontally_elongated poloidal
section at their saturation times are shown in Fig. 5. In
Figs. 5(a) and (b), a birds, eyes view of the pressure of
Run-l and Run-2 observed from the outer side of the
torus is shown, respectively. In Fig. 5(a), we observe
that ridges of pressure are formed. These long, curved
ridges toward the outer side of torus are formed by the
ballooning instability. After the linear growth is
saturated at this time, these steep ridge structures are
gradually fall down to less-steep, gently curving
structures in the course of nonlinear relaxation. In Fig.
5(b), on the other hand, we do not see formation of
ridges like those in Fig. 5(a). In stead of the ridge
structures, we observe structures something like

Fig.5 Birds eyes' view o{
horizontal ly-elongated
Run-1 and (b) Run-2.

the pressure on the
poloidal section for (a)

triangular shields that surround plasma core. These
triangular shields are formed by the growrh of the
interchange instability. It may be noteworthy that both
of those ballooning and interchange instabiliti,es with the
medium scale toroidal mode number can change plasma
profiles significantly and causes appearance of distinct
pressure structures in the edge region as are seen in Fig.
5, although not being destructive to destroy the whole
plasma.

5. Summary
We have developed a new simulation code to solve

a fully-nonlinear, dissipative MHD equations in full 3D
geometry of helical plasmas. We observed excitation of
either the ballooning or the interchange instability,
depending on the initial equilibria, in the linear stages of
the simulations. Their behaviors are in consistent with
predictions of previous linear stability analysis. We have
also shown that instabilities saturate due to nonlinearity.
In the course of nonlinear evolutions, the instabilities
have changed pressure profiles significantly. pressure
profiles at the saturation time of either the ballooning or
the interchange instability have distinct structures in the
edge regions, respectively. The characteristic pressure
structure caused by the respective instabilities, either
ridges or triangular shields, can give information in
identifying the nature of unstable mode observed in
experiments.

As described above, successful reproduction of
linear growth and saturations of instabilities implies that
our new code is applicable to analyze nonlinear plasma
behaviors in helical devices.
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