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Abstract
A different physical mechanism of producing a radial current in the plasma is presented here that

predicts the time evolution E,. A two-dimensional Fokker-Planck equation was used for investigation
about radial electric field problem. The equation is solved by using the Green's functions and adioint
method.
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1. Introduction
It is well known that a radial electric field is a key

factor in the Low-mode to High-mode (L-H) transition
in a tokamak. Stabilizing of turbulence by sheared E x B
flow [1,2] is a good working hypothesis to explain the
turbulence reduction and confinement improvement that
is seen at the plasma edge at the L to H transition.
Theories of E. generation at the plasma edge mostly
focus on increase in the main ion pressure gradient or
greater main ion poloidal rotation in the electron
diamagnetic drift direction. In order to have better
theories to compare with experiment, we need theories
that can predict the spatial structure and time evolution
of E-.

A different physical mechanism producing a radial
current in the plasma is presented here that predicts the
spatial and time evolution of E,, but the problem
presently is solved for the time evolution. It is evident
that a toroidal electric field can produce a toroidal
current, but there is not any work about possibility of
producing a radial current by a toroidal electric field.
There is only a preliminary work [3] that is assumed a

dielectric medium between the plasma and tokamak
chamber, where it leads to a capacitance C. This is
analogous the coaxial cables problems. This capacitance

C represents a radial electric field. By using a RZC
model is shown that this radial electric field appears
when the toroidal electric field is changed. Here
question is: How a toroidal electric field can produce a

radial current? To find a reply for this question we shall
solve a Fokker-Planck equation by using the Green's
functions and adjoint method. By solving the equation
with suitable initial and boundary conditions, we will
derive the time evolution of radial current density and
the situation for producing a radial electric field. It is
well-known that a radial electric field is generated by a
radial current. Usually a noninductively driven current
in tokamaks causes a distortion fi in distribution
function and drop in loop voltage (it means a drop in
toroidal electric field). The H mode is seen in these
regimes. Here we try to get the current carried by j in
radial direction. Although here our main emphasis will
be on rf heating regimes, but this method can be
extended to other regimes, too.

2. Fokker-Planck Equation
The evolution of the electron distribution function

is described by the Fokker-Planck equation. By
substituting/- f^ + f, into the Boltzman equation for the

02001 by The Japan Society of Plasma

Science and Nuclear Fusion ResearchC o r re s p ondin g autho r' s e - mail : far s hi @ t c s c. nifs. a c.j p



Farshi E. et al., AMechanism of Producing Radial Electric Field

electron distribution functionJ the linearized Fokker-

Planck equation that will occupy our attention may be

written as

9f,* 4 !r,-Crf) =- I s-+ *r, trldt" t m dv", - \r r. dv m dv"

where we neglect spatial derivatives'J" = n(ml2iT)3t2

exp(-e/T) and S(v, t) is wave-induced flux. Here 4 and

m are the electron charge and mass, respectively and e is

the energy of an electron. Please note here fi is a
perturbation in distribution function / that can be

resulted from an additional heating such as it occurs in

rf wave heating. The notational convenience C(ft) =
C(fi, f.) + C(f^, f) + C(fi, i) is the linearized

collision operator. Initially, at high speed, the current

carried by electrons is substantial; when they slow down

they carry much smaller current and, because they are

colliding frequently by then, even this small current

persists only for a very short time. Therefore it is a very

good approximation in regimes such as rf heating to

assume that the collisions always take place in the high-

velocity limit, meaningv b vr, where we can simplify

-l , t (r-' df "\c(f)=rli#\i ;i.f )lv

applying adjoint method we first define a commutative

operation on the two functions h(v, t') and g(v, t')
-l

[h,g],= J a', J ,rr,t -c)g(v,c)dr (4)

v0
We also introduce notation

d'v'g(v',v,t,t')qv t (s)

The function j (v, t, t') has a meaning of the influence

function for the moment./. The corresponding influence

function j is the solution of the following equation

j (v,t,r')= [

'= I o J a'" (s. *,)* a)

d-! *e E-uG\ ll + c*( j)=o
dt m dvn

+
(l+Z)- v

2v3

where p = \tlv,l : nqo In\l4nes2m2, v/ = Tlm and to

is the dielectric constant of free space; lnA is the

Coulomb logarithm, and Z is the effective ion charge

state.

Instead of solving the Fokker-Planck equation, we

solve an adjoint equation for the Green's function. The

main physical idea is that in many applications there is

no need for complete information on the particle

distribution function. Therefore a complete solution of
the Boltzman kinetic (or Fokker-Planck) equation is

likewise unnecessary. In most applied problems do not

require knowledge of the distribution functionf(v, t),

since all their requirement is the knowledge of several

moments of f(v, t). Since in most promising current-

generation methods the distribution function of the bulk

particles remains Maxwellian, the problem can be

linearized by putting/= f.(l + h). The radial density of
current,/, is expressed by

(3)

?/2v2 
fio-u'>ftrf e)

(6)

where C* is the operator adjoint to C and may be

written as C* = C(f.i)lf^. The current density "/ will be

We shall solve the equation (6) in a large domain v =
10v, with initial condition j(t = 0) = qv1 and boundary

condition j - qv r wherc v. is the runaway velocity v, =

- 'igr@n1"'[^rnq4.
Please note that in the general case Eq. (7) does not

make it possible to calculate the current density,/,, even

if the solution of Eq. (6) fori(v) is known. The point is

that the particle flux S(v, r) under the integral sign in Eq.

(7) depends on the unknown solution / - f- + ft. Herc

please note in difference between equations (1) and (6).

Equation (1) describes the evolution of a group of
electrons released at t = O at velocity v, buti(v, r) in Eq.

(6) gives the mean current carried by those electrons at

time t later. This current is carried by fi. How Eq. (6)

works is easily seen for toroidal current (it meansi(t =
0) = qv11)) by taking | 2 v, so that the electron only

experiences the electric field. In the Boltzman equation

(1) the electrons have slowed down to v - (llv,21t at

time /. Correspondingly in the adjoint equation (6), the

initial condition js - j(/ = 0) is transported in the

reversed direction so that j(v, t) = js(v - [lv])t). But
here our problem is radial current that the electrons in

radial direction can not be affected from toroidal electric

field in u u ,,, so j(v, r) = 1. Although the solution of

Eq. (6) and obtaining the Green's functionT can give us

a good sense about the radial current, but for to get

some exact results we show solution of the problem for

special case of lower-hybrid waves, too. For lower-

hybrid waves the wave-induced flux will be in the

toroidal direction ?1 and the waves interact with particles

J,(t)= [ Otrf^(v,t)h(v,t)qv t

According to the references [4,5], in direction of
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through landau resonance a) - ftJ1v1' = 0, where cr and &,,

are the wave frequency and parallel wave number.
Furthermore, the typical perpendicular velocity of the
resonant electrons equals the electron thermal velocity,
so that rr= rr << v11. If we use the definition of p, =
lEuS-(1eldv), where P7 is the absorbed power per unit
volume, for narrow waves we can use the followine
relation

r=+ I, o,''i +u,

solve Eqs. (6) and (8) for E' = const. In this case the
radial current I witl not be produced. In next step we
solve Eqs. (6) and (8) for E1 = Eo(l + a/). In these cases
we will see a producing of the radial current. All figures
are plotted for d, = lD(l/v,3)t, and the quantity of Z in
figures is defined by T = (l/v,3)t. The axis of v1 and v1
show the velocities in toroidal and perpendicular (radial)
direction. Figures l(a), (b), (c) and (d) show the surface
of the Green's function of radial current density for
times Z - (l/v,3)t = 0, 0.0002 and 0.0003. Fig. l(d) is
same as Fig. l(c), only it is zoomed. One may see
appearing ofthe radial current in Figs l(c) and (d).

Time evolutions of Green's function of the radial
current density for times in range of 0 < T < 0.00075 is
shown in Fig. 2 for different velocities. Since the
perturbationfi is carried in toroidal direction, such as rf
heating, usually the parallel velocity v11 is very higher

(8)

where Eq. (8) gives the radial current rhat must be
evaluated with v1; = a/k, and v )- = rr.

3. Numerical Results
Here we present numerical results. We have solved

equation (6) by using a finite element code. Firstly we
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Fig. 1 Surfaces of Green's function of Radial Current Density for different times f = Elvfl t = O, O.OOO2 and 0.0003.
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Curves
t: v.w,, v1={l.lv,

bi vr=vrrvr-0
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o: vrdvr, vr'0.1q
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Fig. 2 Time evolution of Green's function of Radial Current Density for different velocities. (here I= (fiv.3)0.

than transverse velocity va. For example, as mentioned

before, in rf heating we have vl = @lkn and vt = vr.

Therefore in Fig. 2 we have considered some cases that

are close to real situation. One may see from Fig. 2 that

radial current for higher parallel velocities starts earlier

than low velocities.

4. Discussion
It is well known that the tokamak plasma has the

ohmic and induction properties. So usually we use an

RL circuit for description of tokamak plasmas. In ref. [3]

an RLC model is used for describing behavior of the

tokamak plasmas. This is analogous to the coaxial cable

and transmission lines used in engineering. In fact

according to ref. [3] is assumed that there exists a

dielectric medium (diluted plasma) between the plasma

and tokamak chamber. When toroidal electric field is
constant (El = const.), this capacitance property does not

play a role and radial current will be zero. But when the

toroidal electric field changes the capacitance property

affects on plasma circuit and a radial current will be

produced.

Here our results are approximately similar to

above-mentioned physical phenomena. The plasma

shows a dielectric property when electric field changes.

The polarization effect in a plasma is similar to that in a

solid dielectric, but dipoles in a plasma are ions and

electrons separated by a distance. But since ions and

electrons can move around a preserve quasineutrality,

the application of a steady E field does not result in a
polarization field. However, if E changes, this

polarization results. After polarization, plasma shows a

dielectric property and this leads to a perpendicular

curTent.

5. Conclusion
The effect of an additional heating of plasma (such

as rfheating) is to distort the distribution function/(v' t).

For to determine the radial current density carried byfi
(distortion part of f(v, t)), we can solve an adjoint

equation (6). In fact since, in this case, we are only

interested in specific moment of fi, we may hope to

reduce the computational requirements substantially by

using a method that gives only this specific moment. For

case of a constant toroidal electric field, the Eq. (6) does

not give any radial cunent, but in case of changing the

toroidal electric field, this equation gives us the radial

current. The reason of producing a radial current (and

radial electric field also) may be related to the dielectric

property of the plasma in case of changing the toroidal

electric field. Usually a noninductively driven current in

tokamaks causes a drop of loop voltage, so it will
change the toroidal electric field and result will be

producing a radial current. Since H-modes are seen in

noninductively driven currents, this radial current must

be considered for investigation of H-modes'

Although here our result was derived under the

simplifying assumptions of rf current drive case and

high velocity form of collision operator, but the method

applies equally well without such assumption.
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