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Abstract
A set of the transport equations is analyzed, including the bifurcation of the radial electric field in

toroidal helical systems. A hard transition is found in the profile of the radial electric field. The region

where the electron root and ion root co-exist is obtained. The various types of the electrostaic-potential

structures are found.
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1. Introduction
Recently, the internal transport barrier has been

found in the ECRH plasma in CHS device. [1'2] The

various types of the potentials have been obtained. The

interface of domains with different electric field polarity

has been pointed out theoretically for helical plasmas.

t3l The internal transport barrier in heliotron plasmas,

which is induced due to the electric field bifurcation'

was theoretically studied based on the zero-dimensional

model. [4,5] To study the interface of neighboring

domains with different electric polarity, the one-

dimensional transport analysis is needed. The

investigation about the dynamics and the spatial

structure of the transport barrier is extended to the one-

dimensional model in order to compare with the

experimental result. The possibility for the transport

barriers (the edge transport barrier and the internal

transport barrier) has been discussed based on the

bifurcation model of the electric field; We have

examined a set of one-dimensional transport equations

which constitute the temporal evolution of the

temperature and the diffusion equation the radial electric

field in a slab plasma. [6] In this article, we examine the

four (one-dimensional) transport equations which

describe the temporal evolutions of the density, the

electron and ion temperatures, and the radial electric

field in a cylindrical configuration. A numerical formula

[7] for the non-axisymmetric part of the neoclassical

flux is adapted. The electric field domain is studied in

helical plasmas. We use the machine parameter for CHS

device [8] when we solve the set of the transport

equations. We study the radial profile of the electric

field and examine the states which are related to the

internal transport barrier. We also show the condition

for the hard transition where the flux is the continuous

function of the plasma radius and compare the structures

of the potentials in the case of the soft and hard

transitions. The hard-typed transition is accompanied by

a spatial rapid change of the radial electric field when

the multiple solutions of the ambipolar condition exist'

On the other hand, the soft transition occurs with a

spatial slow change of the radial electric field only one

solution exists.

2. One-dimensional Model Equations
In this section, we show the model equations used

here. We use the cylindrical coordinate and r-axis is
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taken in the radial direction of the cylindrical plasma.
We consider the region 0 < r < a, where a is the minor
radius. The expression for the radial neoclassical flux
associated with helical-rippled trapped particle is given
as [7]

lT =-el,ferro',n,[- dxx2e-'v L::'2., (l)..- "ro taie,E,).

where x = m,v2/(27), A,(x, E,) = niln l _ Z,eE,/71 + @ _
3/2)T;lTj, r,l{x, o,) =3n3\x) + 1.67(t,te)(@E + aB)2 +
(t,/e)3/2a],/4 + 0.6laaili, anl i/x) = v,o,l1eox3rzS.
Here, the definitions oz = -E,/(rB), @ni = -Tieixl(ZierB)
and vo, = -Til(4erB) are used. The quantitie s m1, n,, 7,,
v,1,i nra the mass, the density, the temperature, the
collision frequency using the thermal velocity for the
species j and the parameters E, and q, are the toroidal
and helical ripple, respectively. The prime denotes the
derivative with respect to the radial direction. This
expression for the particle flux is the connection formula
and available for both the collisionless and collisional
regimes. The energy flux related with neoclassical ripple
transport is given as [7]

Qi'= qT * ]ryr,
,* 

d**Ir-, v,to .Al!71 . rzl= -4 f,€nviin,T, Jo r . a;(x.E.)
The radial electric field equation in a nonaxisym_

metric system is expressed by [9]

IF

ff=-i4 t''r
, r/- fr\*J, *12 z,{or,+ Duo) r+1, (3).or\i d, l

where Dpo is the anomalous component of the diffusion
coefficient for the radial electric field and e1 is the
perpendicular dielectric coefficient as €-L - q((cz/v2) +
l)(l + 2q2). Here, q is the dielectric constant in the
vacuum, c is the speed of light, v,a is the velocity of
Alfvdn wave and 4 is the safety factor. The factor (l +
2q2) introduces the toroidal effect. t10l In Eq. (3), rhe
neoclassical component of the diffusion coefficient is
expressed by [9]

DEj=-i#*1 n,v*,Tl gl
(z,e)a ,td

dxe-'x3(r

where 16 = lvn,/(e1,( la, | * | T,/(Z,e)ei | ))1213. goth
parameters Dp, and Do are used in the following
analysis.

Equation (3) is solved together with the density and
the temperature (ion and electron) equations. The
equation for the density is

where ft is the total particle flux written as P = fr, _
D"dn/)r. Here, Do is the anomalous component of the
particle diffusivity. The term Sn represents the particle
source such as the ionization effect. The equation for the
electron temperature is given as

|fi1"r"1=-tr ${,o:)-ft t(r"-r,) + Po", (6)

where Qj is the total heat flux of the species j written as

Qj = Qi" - ny"dT,lAr. Here, 7o, is the anomalous part of
the heat conductivity for the species 7. The tetm re
denotes the electron collision time and the second term
in the right hand siderepresents the heat exchange
between ions and electrons. The parameter p1,"

represents the absorbed power due to the ECRH heating
and its profile is assumed to be proportional to exp(_(r/
(0.2a))2) for simplicity. The equation for the ion
temperature is

-7,)+P0,. Q)

The parameter Pr; represents the absorbed power of ions
and its profile is also assumed to be proportional to
exp(-(r/(0.2a))2).

3. Stationary Solutions with the Hard
Transition
The density, temperature and electric field

equations Eqs. (3), (5), (6) and (7) are solved under the
appropriateboundary conditions. For the initial
condition, we choose E,(r) = 0 and the plasma profiles
evolve to the steady state. We fix the boundary
condition at the center ofplasma (r = 0) such as dnldr =
dT"ldr = dTil0r - E,(= -aQlaD = 0, where @ is the
electrostatic potential of the radial electric field. For the
diffusion equation ofthe radial electric field Eq. (3), the
boundary condition at the edge (r = a) is chosen as

\,4f , = 0. This implies that there is no momenrum
transport loss across the plasma surface. This simplified
assumption is employed because the electric field
bifurcation in the core plasma is the main subiect of this

*=-1$(,r';*s., (s)

l 3, b, ) = - I !; (,e' ) - u^", t (, 
"

.t) r,
(l'.1.l,*'rl)"

(4)
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article. The boundary conditions at the edge (r = a) with

respect to the density and the temperatureare those

expected in Compact Helical System (CHS): -nln' =
0.05 m and -T"lTi = -TilTi = o'o2 m' The machine

parameters are thoseof the CHS device, such as the

major radius R = 1 m, a = 0.2 m' toroidal mode number

m = 8, poloidal mode numbet I = 2 and helical ripple

en/) - ICI{mrlR), where 11 is the modified Bessel

function of the first kind and the typical value of C is

chosen according to the experimental condition- We

consider the hydrogen plasma, so 21- 1 for the charge

number in terms of ions. The particle source term S, is

assumed to be S, = SoexP(100(r - a)), where the value

of 56 is determined by the particle confinement time'

Here, the value of ,!6 is chosen &s 56 = 1023 so as to

study the case fi. = l0r8 m-3), where n is the line-averaged

density. For simplicity, the coefficient of the toroidal

effect is chosen as (1 + 2q') = lo' The values for the

anomalous parts of the diffusion coefficients are chosen

as Do= 1 m2ls, )(o"= 5 m2ls and Xoi= | m2ls. The value

of DBo is Dso = l0 m2ls. They do not necessarily

coincide those in experiments. This simplification is

employed to illustrate the existence of the electric field

interfacein CHS plasmas' These values are set to be

constant spatially and temporally. In order to set the

line-averaged temperature of electrons to be around

f 
" = 200 eV, the absorbed power of electrons is around

10 kW, for this choice of 76o". The line-averaged ion

temperature I is chosen as about ii= 400 ev' where the

absorbed power of ions is fixed as 6.25 kW. These

values of the absorbed power are determined by the

values of the anomalous diffusivities. The value of the

absorbed power is different from the experimental

condition because the anomalous diffusivities are set to

be the smaller values compared with the observed

values in experiments.

Using these parameters and the boundary

conditions, we analyze Ees. (3), (5)' (6) and (7)' The

stationary solutions of the radial electric field are shown

in Fig. I as the function of radial axis for the case of Z"

= 130 eV. Figure 2 shows the density profile (a) and the

temperature profile of the ion and the electron (b)' These

profiles (E,, n, T" and T) are obtained from the

calculation results of Eqs. (3)' (5)' (6) and (7)' At the

point r = rr(0.08 m), the transition characteristic is

found. The positive solutions of the radial electric field

correspond to the so-called electron roots and the

negative solutions represent the ion roots, respectively'

The circles in Fig. 1 show the values ofthe electric field

which satisfy the ambipolar condition (|f" = f?') for the

calculated profiles of the density and the temperatures'

The multiple solutions are allowed from the ambipolar

condition. At the transition point, the maximum value or

the minimum value of the electric field shear is found to

be taken. The transition points in the interface should be

determined by the Maxwell construction' [10] The

function LY = I:,2(fi"(E,) -li'(E,))dE,is introduced,

where E1 and b'2 are the stable solutions of the

ambipolar condition.The relation AY= 0 represents the

Maxwell construction. We confirm that the Maxwell

construction is satisfied at the transition point in Fig' 1'

The internal transport barrier is obtained for the channel

of the neoclassical energy transport, being observedin

both of the ion and electron temperature profiles in Fig'

2(b). In Fig. 3, the variations of the neoclassicalpart 7i"
of the heat conductivity for the speciesj are shown' At

the transition point, the rapid change ofboth of 7!" and

7i' is obtained.Within the radius of r 1 r'r, the transport

barrier with reduced transport is formed. The steeper

gradient is observed in the ion temperature profile than

in the electron temperature profile in this case' This is

caused by the choice ofZio values for the speciesj' The

change of the density gradient at r = rris also shown in

Fig. 2(a).

Figure 4 shows the change of_the regions of the

electron root and the ion root when ?, increases from 50

eV to 600 eV, by changing P1,".The absorbed power of

ions is fixed at 6.25 kW and T; is around 4-00 eV' The

term So is set as So = 1023 m-3 s-t' WhenZ, increases

from 50 eV to 600 eV, the value of re does not change

and the change of I is smaller than 40 eV. When the

-s00%Lo r, o'1
r(m)

Fig. 1 Radial dependence of the electric field (Solid line)'

Circle marks show the electric field derived from
the ambiPolar condition.
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80 eV, the shape of the potential looks likewell-shape.
When Q becomes 130 eV as is discussed in the previous
section, the potential looks like Mexican hat-shape. The
steep change of E" or the large E. shear is obtained at r
= 0.08 m, because the hard transition occurs at this
point. The magnitude of the electric field shear is about

-5 x 105 V/m2 and enough large to reduce the
fluctuations. Therefore the suppression of the anomalous
transport diffusivities can be expected. If i" increases up
to 600 eV, the potential shape looks like hill-shape. The
absorbed power of ions is fixed at 6.25 kW and I, is
around 400 eV.The term 56 is set as So = 1023 m-3 s-r. If
Zr is much lower than I", the multiple solutions are not

lt)
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Fig.2 Radial profile of the density (a) and the profiles of the temperature of ions and electrons (b) are shown. In Fig.
2(b), the dashed line represents the ion temperature and the solid line shows the electron temperature profile.
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Fig. 4 L_ocation of the domain interface as a function of
I". The change of the radial regions of the
electron root and the ion rootswhen the line-
averaged temperature of electron increases from
50 eV to 600 eV.
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Fig.3 Radial profiles of the neoclassical heat
conductivity of electrons (solid line) and ions
(dashed line) for the case of Fig. 2.

line-averaged temperature of electrons is low, all
solutions are ion roots. On the other hand, all solutions
become electron roots if Z" increases up to 600 eV. The
parameter regime (80 eV < f" < OOO eV) is found where
the electron root exists in the inner region and the ion
root exists in the outer region.

4. Hard and Soft Transitions
In experiments in CHS, the various types of

potentials are observed. These potential are classified to
many shapes, e.9., bell-shape, dome-shape, hill-shape,
Mexican hat-shape and well-shape. [8] In the previous
section, we show the case where the hard transition in
the potential profile takes place. In the case when I, is
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Fig. 5 Change of the potential profiles with the absorbed
power. In the cases of the dotted (Hill), dashed
(Mexican Hat), and solid (Well) lines, the line-
averaged electron temperatures are 600 eV, 130

eV and 80 eV, resPectivelY.

seen. Full description of the change between the hard

and soft transition will be presented in a full paper. [11]

5. Summary and Discussions
In summary, the model equation of the radial

electric field bifurcation is shown to contain the

temporal and spatial evolutions of the plasma density,

the temperatures and the radial electric field. The

numerical formula of the non-axisymmetric components

of neoclassical particle and heat fluxes in helical

systems is included.

The stationary structure of the radial electric field

in heliotron plasmas is examined and the hard-type

transition with hysteresis characteristic is found. The

state which conesponds to the internal transport barrier

is obtained. It is found that the electron root and ion root

co-exist. The states where the hard and soft transitions

occur are obtained, depending on the ratio T"lTi. The

turbulence suppression due to the electric field shear -5
x 105 V/m2 can be expected at the point where the hard

transition occurs.

In this article, we set the anomalous diffusivities

(Do, X"; and D6) to be constant, temporally and

spatially. To compare the experimental results in details,

the calculation by use of the turbulent model with

respect tothe anomalous diffusivities is needed. These

are left for the future studies.
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