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Abstract
It is clarified that the "helicity conservation law" is never "the conservation equation ofthe helicity

K itself", but is merely "the time change rate equation of K". It is shown that since the total helicity K
can never be conserved in the real experimental systems, the conjecture of the total helicity invariance is
not physically available to real magnetized plasmas. With the use of auto-correlations for physical
quantities, a novel extended generalized self-organization theory is presented, that neither based on the
variational principle nor the energy principle. The self-organized states of every quantities may be

realized during their own phases, and the dynamical system may evolve repeatedly out of phases self-
organizations among quantities, depending on boundary conditions and input powers.
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1. Introduction
Since Dr. J.B. Taylor published his famous theory

[1] to explain the appearance of the reversed field pinch
(RFP) configuration [2], the magnetic helicity K has

been believed to have important role as a global
invariant in the self-organization process or the relaxa-

tion one of magnetized plasmas [3,4]. On the other

hand, one of the authors (Y.K.) has been proposed the

partially relaxed state model (PRSM) of the RFP in
order to explain experimental data [5]. Without using
the concept of the magnetic helicity, an energy integral
was derived to deduce the PRSM and the mode
transition point of the self-organized state in order to
explain experimental data on the RFP [8.9].

In this paper, we study again the meaning of the

magnetic helicity itself from the thought analysis [6],
because of many evidences showing no invariance of
the total helicity in simulations [7] and various
experiments [9,10].
* Corresponding author's e-mail: kondohy@ el. gunma-u.ac.jp

2. Theoretical Thought Analysis
With the use of the thought analysis [6], we show

here that although the energy conservation law is always

physically correct, the "helicity conservation law" is
never "the conservation equation of the helicity I<

itself".
Both of the energy conservation law and the

helicity conservation one are derived from the following
axiom set of physical laws of Maxwell's equations
written in the MKSA unit used in the usual text books:

dB =-vxr,
ot

P =-.i* Y xH,
dt

Y.D=p,

V.B =0,

(1)

Q)

(3)

(4)
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We can get Poynting's energy conservation law, using

Eqs.(l)-(a), as follows

(ExB).ds. (6)

The two physical laws of Eqs.(1) and (4) are

rewritten equivalently by the following two equations

with the use of the scalar and the vector potentials;

nj.Bdv

(ExA- 0B ).dS. (15)

The misunderstanding on the "helicity conservation

law" has been established from the following argument,

using "the time change rate equation of K written by

Eq.(15)" tll. (A) At first, we consider "the ideal case"

where the whole region of plasmas inside the boundary

is filled with the ideally conducting plasma and the

boundary surface is the ideally conducting wall, i.e., 4 =
0 and E = 0 and B.dS = 0 at the ideally conducting

wall. We then get from Eq.(15) in this "ideal case" that

"the time change rate of K" becomes as dKldt = 0. (B)

From this result, we may conclude as follows: Since the

value of K is constant along the time variable /, the total

helicity K is conserved and therefore it must be "the

time invariant in the dynamical system in the case of
ideal plasmas".

However, the part of (A) declares only that the

value of K defined by Eq.(9) does not change along the

time variable r in "the trivial case" of n - 0 plasmas

filling fully within the ideally conducting wall.
From the following simple thought experiment, we

can easily find that the total helicity K is never "the time

invariant inside the ideally conducting wall". We

consider a case, where some vacuum field regions with

4 = - separate slightly the 4 - 0 plasmas from the

ideally conducting wall. We then have to come back to

Eq.(10), and we can put E = 0 in the plasma but have to

leave E in the vacuum field region. In this simple case,

the value of dKlOt is passively and resultantly
determined by the volume integral of B'E in Eq.(10).

The total helicity K can never be conserved in the

dynamical system in this simple case. The simple

thought experiment shown above may lead us to a

conclusion that the helicity conservation during the

relaxation of magnetized plasmas does stay "Taylor's
conjecture" forever.

On the other hand, the energy conservation law of
Eq.(la) declares that even if 4 = g or 4 = 0 and E = 0 at

the ideally conducting wall, the left-hand si.de dW1/dt

always balances with the volume integral term of (7 x
B).v, which is called the dynamo term, in the right-hand

dw' 
=- |ar Jv

I-m(5)

T=-h[.
.frf,

tqj.j+(jxB).rldv

f ta"ur'as. (r4)*,= Le+*Eftdv,

Y=-!,, uor-hf,

d4 =_vp_n,
At

B=V xA.

The magnetic helicity K is basically defined by

following equation [1]:

0)

(8)

the

K=+l t.nav. (9)
Fo Jv

Here, we emphasize that even if we include "the

external helicity", taking account of the gauge

invariance [], the following argument is still essentially

correct and applicable. After the partial derivative of the

definition Eq.(9) with respect to t, and using only two
physical laws of Eqs.(l) and (4) with their equivalent

Eqs.(7) and (8), we obtain the following equation for
"the time change rate of K",

B.EdV

(ExA- oB ).ds. (10)

Assuming (E.D)12 << (H.B)12 in the plasma con-

finement experiments, we obtain the following equation

for the field energy I{1,

(1 l)

where W- is the magnetic field energy component of
lVr. From Eqs.(l l) and (6), we obtain

ay,=- [i udv-+$ rr"rr.os. (t2)
dr Jv" I'o Js

Using the simplified Ohm's law Eq.(13), we obtain the

conservation laws of W1 and K as follows,

aK_ 2 [
i_-F; J,

.+f,

W,=l (E'^D *n+)dv=w^,'Jv22

Ohm'slaw: E+vxB=r\i. (13)
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side. The value of the helicity K has never been con-

served in the computer simulations by R. Horiuchi and

T. Sato [7], and also in all experiments on the reversed

field pinch (RFP) by many authors [2,91, on the toroidal

Z-pinch by K. Sugisaki [10] and on merging two
Spheromaks into one field reversed configuration (FRC)

or one Spheromak by Y. Ono, Katsurai et al. [1].
Especially, in the case of the toroidal Z-pinch ex-

periments, the total helicity K increases to finite values

from zero initial value within a few tens of its [0].
These experimental results have been demonstrated that

the conjecture of the total helicity invariance by Dr. J.B.

Taylor is not physically available to real magnetized

plasmas.

As is well known, the variational principle and the

related or resultant dynamic equations are physically

equivalent, i.e., we can start with either the variational
principle or the related set of dynamic equations in order

to analyze the systems. This fundamental physical

thought is also the same for the energy principle and the

related dynamic equations. Without using the concept of
the helicity K, we can derive the Taylor state V x B =
)aB from the equation of the relaxed state of MHD
plasmas written as V x (4V x B) = )8, which includes

the Taylor state of V x B = AaB as a special case where

4 is spatially uniform [12].

3. Generalized Self-organizataon Theory
We develop here a novel extended generalized self-

organization theory that is an extension of the last report

in [2]. It should be emphasized here that the gen-

eralized self-organization theory with the use of auto-

correlations for physical quantities is not fundamentally

based on neither the variational principle nor the energy

principle, and the auto-correlations is never time
invariants.

Quantities with n elements in general dynamic
systems of interest shall be expressed as q(t, x) = {qt(t,
x), q2(t, x), ..., q"(t, r)). Here, r is time, r denotes m-

dimensional space variables, and q represents a set of
physical quantities having n elements. We consider a

dissipative nonlinear dynamic system which may be

generally described by

conservation equations for qi(t, r) as follows,

I f -a ! q,(t.x)q,(t.x )l l dy
Jr 'dt 2 ''

f
= Ju 

{ a,Q 'x) GiIcll dv. (r7)

From the standpoint of observation on over aII time

evolution of the dynamic system, we can identify or
define "the self-organized state" as "the state of the

most unchangeable structure". The definition may be

mathematically expressed by using auto-correlations,

q;(t, x)qiQ + Lt, x), between the time, t, and slightly
transferred time, / + A/, with a small Ar in the following
way, i.e., self-organized state is defined by

. ,lq,(t.xlo,(t+N.x)dV . Iminl 1aij-j:-1!rj-:-_]-*' - I I state. (18)' ! q,(t , x) q,(t , x) dV

Substituting the Taylor expansion of q,(t + Lt, x) = q,(t,

x) + ldq;(t, x)ldtlLt + ... into the definition Eq.(18), and

taking account of the arbitrary smallness of Ar, we

obtain the following equivalent definition for of the self-

organized state from the first order of Ar in the

definition Eq.(18):

I q,(r. x tld q,rt. xY& I av
-inl#lstate. (19)' I q,(t , x) q,(t , x) dV

Substituting the original dynamic equation, Eq.(16), into

Eq.(19), we obtain the following final condition for the

self-organized state

I q,Q ,x) G,lqldV
min 

I I state. QO)
I q,1t , x; q,1t , x) dv

Since we have substituted the original dynamic

equations into the definition of the self-organized state,

we can recognize that "whole properties of the dynamic

system is essentially embedded in the process of
calculations to derive the self-organized state from the

final condition of Eq.(20)".
The mathematical expressions with the use of the

variational calculus for the definition of Eq.(19) and

further the final condition Eq.(20) are written as follows,

defining a functional F with use of a Lagrange

multiplier 2;:

F=[ {qt(t.x)G,Iq]Jv ' -''Y = G,tql,
ot

(16)

where G;[q] denotes linear or nonlinear dynamic

operators, which may include no dissipative and/or

dissipative terms. After taking the product of qi(t, x) and

both sides of Eq.(16), and integrating both sides of the

resultant equation over the volume V, we obtain the

+ ),, q,(t,x)qt!,r) ) dV.

6F=0,

Qr)

Q2)
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62F>0, (23)

where dF and 62F are respectively the first and the
second variations of F "with respect to the variation
64(x) only for the spatial variable r". Comparing
Eqs.(17) and (21), we can find that the conservation
equations concerning with the quantities qi(t, x) for the
dynamic system of interest are naturally included in the
present formulation of the generalized self-organization
theory. The implicit assumption in this theory is that the
dynamical system evolves all possible area in state
phases.

When we apply the extended generalized self-
organization theory to fusion plasmas, we use here the

following three more physical laws, i.e., the conserva-

tion laws of the mass, Eq.Q$, and the momentum,
Eq.(25), and the generalized Ohm's law, Eq.(26).

9r.= [ '*u E-( jxB\.v-Q"ij.j
dr'Jvffi"'"

* h i tvP" - (m,/m)Z,YP,)l dv. Q9)

According to Eq.(21), we obtain the functional for the

field energy F1, for the kinetic energy Fu, and for the

current F., respectively, as follows,

F,= | l-j.E*1,f07'E *B--L1ydv' Jv 2 2ltn"
-hf,(ExB)'ds, (30)

,r= [, t+, vv.(p^v)- p^v .t(y .V)y l

+ | P.E' v+ ( j x B )' v - P^v' V( f" + P,ll

$=-v .(p^v).
dt

O^! =- O^(v 'V)v+ [P.E + jxB
_V(p"+p, )1.

* = + tE + v x B - rL, i - +( ixB )

+ rJrN r" - (m 
"/ 

m,) Z,Y P, 11 .

+).,P^v.vldV,'2

I e2n
O,= 

Ju 
- 
*'," li' E - ( ix B \' v - 4"; i'il

*;ii. tvP" - (m./m,)Z,YP,l

+ )"" i.i y av.

(3 1)
Q4)

Qs)

Q6)

These three equations come from the Boltzmann kinetic
equations for electrons and ions. Therefore, we start
with an axiom set of seven physical laws, and the charge
conservation law is included in Maxwell's equations,

Eqs.(l)-(a). Conservation laws of W1, the kinetic energy
1421, and rhe current defined by W"= lrlttZyi.idV are
obtained as follows:

(ExB).dS. Q7)

(32)

In general, we take variations with respect to 6E, 68,
6v, 5j, 6p^, 6p", 6P., 6Pi, 5n., 6ni, and 64";. From the

Euler-Lagrange equations for the solutions of Eq.(22),
we will get new various equilibrium configurations of
the self-organized states with the plasma flow, the shear

flow, the space charge, the space potential, the deviation
between the ion and the electron density profiles, the

resistivity profile, and so on, depending on the boundary
conditions and the external input sources such as the

various energy injections and the particle beams. The
resultant equilibrium configurations are far beyond the

conventional MHD equilibrium ones by the Grad-
Shafranov equation based on the equation ofj x B =Yp.
The results of the present calculation will appear
elsewhere.

Dividing Eq.(29) by e2n"/m". we find the resultant

equation becomes a power balance equation.

4. Concluding Remarks
Analyzing the logical and mathematical structures

of the derivation process for the "helicity conservation
law", and using the simple thought experiment for the

case, where some vacuum field regions with 4 = -
separate slightly from the 4 = 0 plasma from the ideally

Y=-1,, Edv-hf,

9t = f t-l v.vY.(p.y)ar"Jv2
- p^v .[(r, .V)r ]+lp"E.v+( jxB).v
-p^v.V(P.+P,)lldy. eg)
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conducting wall, we have clarified that "the so-called

helicity conservation" is never "the conservation
equations of the helicity K", but is merely the equations

for "the time change rate of K". The total helicity K can

never be conserved in the real experimental dynamic

systems, as was observed in the toroidal Z-pinch experi-

ments [0], the conjecture of the total helicity invariance

by Dr. J.B. Taylor is not physically available to real

magnetized plasmas.

In Section 3, we have presented the extended gen-

eralized self-organization theory that is generalization of
the theory in [6]. We have shown that "whole properties

of the dynamic system is essentially embedded in the

process of calculations to derive the self-organized state

from the final condition of Eq.(20)". It should be

emphasized here that the extended generalized self-
organization theory can deduce the Taylor state without
using the concept of the helicity, and further be applic-

able for any nonlinear dynamical systems 112,13,14,151.
It is important to point out that the self-organized states

of every physical quantities of interest may be rcalized
during their own peculiar phases, i.e., not at the same

time but some of quantities reach to their self-organized

states mutually at different times. The dynamical system

may evolve repeatedly in a state phase diagram, having

out of phase among quantities, i.e., "out of phases self-

organizations for each quantity", due to boundary
conditions and input beams and/or powers.

In order to realize the steady state of the confine-
ment system of plasmas, we can extend conventional

methods of plasma current drives with the use of the

three conservation laws of Eqs.(27)-(29), using energy

injections with use of various types of energies, such as

magnetic energies, electromagnetic wave energies,

internal energies of plasmoids by plasma guns, which
induce the thermal plasma flow velocity, various particle

beam energies, and so on. These additional injections

give us more dynamic equations added to Eq.(16) for
the system of interest.
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