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Abstract
one of the main results of the Wendelstein 7-AS stellarator (major radius 2 m, average plasma

radius 0' l8 m, magnetic field 2.5 T' low shear) is the achievement of the H-mode confinement in ECR-
and NBl-heated plasmas. The features of the H-mode are similar to those of a tokamak: reduction of the
Ho-emission, onset of poloidal rotation anda30vo improvement of the energy confinement time, which is
acompanied by a reduction of the turbulence level. However, the critical dependence on the rotational
transform is a particular feature of this low shear stellarator and in the following paper an attempt will be
made to understand this phenomenon by investigating the specific influence of the magnetic geometry on
the onset of poloidal shear flow. In the frame of a dissipative model of a steady-state plasma equilibrium
with flow the poloidal and toroidal force balance on magnetic surfaces are investigated. The neoclassical
poloidal viscosity has a strong dependence on the external rotational transform. The H-modes windows
found in wendelstein 7-AS can be identified with regions of high order rational magnetic surfaces, where
viscous damping is small. The paper discusses the conditions for convective plasma flow, which in
conjunction with the inertial forces is providing the spin-up mechanism of poloidal shear flow.
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1. Introduction
L-H transitions in the low-shear Wendelstein 7_AS

stellarator exhibit all characteristic features of L_H
transitions found in tokamak experiments: a sudden
decay of Ho-emission, increase of plasma confinement
accompanied by a quiescent phase without significant
MHD-activity and plasma fluctuations [l]. In the phase
prior to the L-H transition ELMs have been observed
which also exhibit intermittency leading to a steepening
of the electron temperature gradient in the quiescent
phase between ELMs. However, in contrast to tokamak
experiments these L-H transitions only occur above a
density threshold [2] and only in some narrow gaps on
the iota-scale [3].

A particular feature of the H-mode windows is that
these exist in the neighbourhood of low-order rational

magnetic surfaces close to t = l/2 and r = 5/6. The
regions where in Wendelstein 7-AS L-H transition have
been observed are around r(a) = 9.43, = 0.52 and = 0.55.
In the H-mode window neither r = l/2-surface nor t = 5/
6 surface exists inside the plasma body. The upper
boundary of the H-mode window is characterised by r =
ll2, t = 10/19 and t = 516 at the plasma boundary. On
these magnetic surfaces magnetic islands exist, which
are the natural result of the 5-fold symmetry of the
magnetic field and the toroidal curvature. At the lower
boundary we find the limit at t(0) = 5/ll,t = 5/10 and r
= 10/19. Magnetic surfaces inside the H_mode window
have a rotational transform L = mlnwith m > 1, n > l.
Such surfaces are called ,,high order rational surfaces..,
while those surfaces with low m and n are ..low order
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rational surfaces". Magnetic islands on the plasma

boundary provide an enhanced mechanism of radial

particle and momentum transfer and thus inhibit the

build-up of a poloidal shear flow, which is considered as

a basic feature of the H-mode physics. The effect of

rotational transform and magnetic field line topology on

poloidal viscosity has been investigated elsewhere [4]'

Braginskii viscosity exhibits only a weak dependence on

the rotational transform t5l. The viscosity in the plateau

regime, however, does strongly depend on the rotational

transform. On low order rational surfaces strong maxima

arise which may lead to strong damping of a poloidal

shear flow. The plateau viscous damping is small in

those regions where the H-mode windows exist' In the

following the model of a non-ideal plasma in the

boundary region will be discussed. The Ho-emission

indicates the presence of neutral hydrogen in the L-

phase, while the H-phase the neutrals apparently have

been reduced to a low level. Neutrals in the boundary

region affect the parallel momentum balance and leads

to small pressure gradients along the field lines' A

similar effect arises due to parallel viscous forces and

the inertial forces of the plasma rotation' Although these

forces are small the resulting pressure gradients along

fields lines can lead to large perpendicular gradients in

poloidal direction and thus to large convective cells'

Such a convective state can be laminar or turbulent,

showing all modes of transition between these states'

The H-mode is characterised by the absence of a large

convective state, leading to a steepening of density and

temperature gradients.

2. Plasma Equilibrium
To describe the plasma equilibrium in the boundary

region we consider the momentum balance of a single-

fluid model taking into account dissipative effects as

viscosity, resistivity and plasma neutral interaction' The

momentum balance and Ohm's law are

Yp = j xB -Fn- V'n(v) -YPv "v

-VO+ vxB=4i

(1)

(2)

Futhermore, we retain the equation of continuity Vp'r =

S and VY = 0. The energY equation is

v'\e*/,r,1*oo'v=Q (3)

The ideal gas law p = kTplmr correlates density to

temperature. The heat flux is poportional to the

temperature gradient q = -a'YT with a strong anisotropy

between parallel and perpendicular thermal conductivity

1. S is the mass source and Q is the energy source' The

viscous forces are given by the Braginskii viscosity or

by the neoclassical viscosity depending on the

collisionality. The interaction with the neutral

background is F, = m1nsNsl6v)rt, ns is the plasma

density and N6 the density of neutral hydrogen, o is the

charge exchange cross section. Here we have assumed

that the neutrals are at rest. The role of neutral gas

background in the physics of L-H transition of tokamaks

has been reviewed by Fukuda [6], experimental studies

have been reported inl'l-91, however there seems to be

be no consensus on how important the interaction with

neutrals is. Theoretical studies on the effect of neutral

background on L-H transition are described in refs' [10-

121 The main result is that small neutral interaction has

little effect on the L-H transition, however it was shown

in ref. [13], that a small friction parallel to magnetic

field lines can give rise to bifurcation and convective

solutions. There is no continuous transition of a model

with parallel momentum loss by charge exchange to a

model without charge exchange, on rational magnetic

surfaces singularities occur.

The model outlined in eqs. 1-4 is appropriate to

describe a quiescent plasma with small diffusive

velocity, which has no feedback on the momentum

balance. Laminar convective solutions are possible and a

selfconsistent rotating plasma can also be described by

this model. Reduced versions of this model have been

analysed in ref. tl4l, in particular existence and

uniqueness of solutions have been investigated' In ref'

[14] it was shown that the friction model (neglect of

viscosity and inertial terms) has a unique solution if
resistivity and plasma neutral are large enough'

Convergence of an iterative scheme can be proven under

these conditions. The iterative procedure starts with a

magnetic fiels Bs and computes pressure, density'

temperature, electric potential and the plasma current

from eqs. 1-5. The current generates a magnetic field 81

and the procedure is repeated. The sequence of magnetic

fields {86} converges if the sequence of current

densities { j"} is uniformly bounded and satisfies some

continuity conditions (ref. t14l)' In the following we

consider the magnetic field as given and analyse how

the solutions of the eqs. l-3 depend on the structure of

the magnetic field.
In order to describe stability and turbulencp the first

order derivatives have to be added in eqs' 1, 3,4 together

with Faraday's law. This will introduce the turbulent

Reynolds stresses <pviv> and the turbulent fluxes <pu>

and <pv>. The brackets <> denote the average over the
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turbulent time scale.

3. Momentum Balance
In the limit of ideal magnetohydrodynamics

resistivity, charge exchange interaction and the inertial
forces are neglected. This is the standard model to
compute stellarator equilibria. Since there is no feedback
of a plasma motion on the momentum balance an
arbitrary rotation within the magnetic surfaces can be
superimposed. In this case there are two free surface
functions <D6(y) and \(y) and the rotation velocity is

VO"xBvo=--;a- +i"oB+AoB; V.%=0 (4)

In lowest order pressure surfaces, density surfaces,
temperature surfaces and magnetic surfaces coincide. In
this limit the plasma motion is incompressible.
However, even under these conditions several stationary
solutions can exist, in addition to the classical case of a
slowly diffusing plasma also convective solutions
without net toroidal or poloidal fluxes can exist.
Furthermore a superposition ofrotation, convective and
diffusive solutions can exist.

In order to clarify the force balance in more detail
we assume that a steady state solution exists and that the
dominating part of the plasma velocity is a tangential
velocity given by eq. 4. We make the following ansatz v
= Vo t 6y. Pressure surfaces and magnetic surfaces no
longer coincide. The force balance on pressure surfaces
determines the size of the rotation velocity, which can
be seen by averaging the momentum balance equation
on pressure surfaces. This averaging process on a
surface P = c is defined as a surface integral with the
weight function lVpl. For any periodic scalar function g
we get <B.Vg> = 0 and <,t.Vg> = 0. If the magnetic
surfaces and the pressure surfaces coincide, this
averaging is taken over magnetic surfaces. To proceed
further we introduce a formal expansion with respect to
dissipative and inertial forces. Introducing the expansion
parameter e we consider the friction and viscous forces
as of order e2 and the inertial forces of the order e. The
magnetic field is a fixed field, which has closed
magnetic surfaces labeled by the flux function \r.

The plasma functions are expanded in powers of e
j= jo+ejt+... ; v=Vo+e6y+...

p = P(\D + e6p + .. ; p = po (V) + e6p + .. (5)
In lowest order the current is the current of an ideal
equilibrium and the velocity is a linear combination of
the lowest order plasma current and the magnetic field

i o = P6V) e, : Vo = E(tlD eo + A(V)
e ox B =Vty

eo is the poloidal Hamada vector on the magnetic
surface, this vector is divergence-free. EVy is the radial
electric field in lowest order. In this order in e we have
no tangential forces on magnetic surfaces, also in first
order the average inertial forces are zero. In second
order of e the averaged poloidal force balance is

and the parallel force balance becomes Eq. g

o = (n r',)
/t

tl
+ ( u. v.(uou.,vo + po6u, vo + p.4,sr) ) (S)

\ \ ll
These relation state that in case of an rotating
equilibrium the dissipative forces in direction of the
magnetic field and the plasma current are balanced by
the inertial forces. If the convective velocity is known
these relations can be used to compute the rotation
velocity Ve. In a stellarator without net toroidal current
the current lines are poloidally closed if they sray on
closd surfaces. Thus eq. 7 basically describes a poloidal
force balance while eq. 8 describes the toroidal force
balance. The friction and viscous forces tend to slow
down the plasma rotation, the driving mechanism has to
be provided by the inertial forces. This driving
mechanism is the Stringer spin-up mechanism t151. If
the plasma becomes turbulent the averaged momentum
balance eqs. 7 and 8 will be slightly modified and the
time-dependent part of 6y leads to an additional driving
mechanism, which has become known as the Reynolds
stress mechanism.

The quadratic term of the inertial forces is the
centripetal forces while the othe two are the Coriolis
forces. The centripetal forces are important at large
velocities, in L-mode they can be neglected. Inserting
V0 into the driving forces yields these forces as a linear
combination of E, A and its radial derivatives [4]. The
convective velocity is written as a sum of a
perpendicular and parallel component

6v=6yr+l,B

(6)

o = (ro ,,) * (",.r."V))

. (r,o (uo* :vo+poar'%*e.%'6r)) e)

+ (B v. n(v))

(e)
The parallel velocity usually is larger than the
perpendicular velocity t4l. The poloidal force due to the
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All other coefficients depend on the perpendicular part

of dv. This parallel velocity associated to any diffusive

or convective plasma motion is the main driving term of

the Stringer spin-up. Taking into account the

perpendicular convective velocity would lead to driving

forces, which are also proportional to the first order

radial drivatives of E and A. So far a time-independent

convective motion has been assumed. However, if the

convection is unstable and a turbulent state arises' the

averaging procedure must be extented over the time

scale of the turbulence. The extension of the previous

analysis to the turbulent plasma is described in [16]' the

classical Stringer spin-up of a quiescent plasma is

replaced by the anomalous Stringer spin-up [17]' The

poloidal spin-up term in this case is

Lfr=

L=vrl (13)

where Z is the operator and vp the particle drift velocity

including the electric drift. The evaluation of the viscous

forces yields

(14)

parallel velocity is

(o,u'' (","'.)) =RttE

n',=(poIB'(r,tv"",))

t- , ,\
(o6v (e, >< 

".)/ -- R,,E

n,,=Ioxn'(r-tVt, t\" \' ")I

_#0,(,i_it)v, ry
8., *v,'Y - c

(10)

(l l)

(r2)

(1;;.;i)=(il r:)(r)

where the viscous coefficients are

p,=#(l ,,r.r,,0,")

u,=#(l otuf r,,ua'u)

tr,=#(l ',r'o',0'"1
and

',=(u,i -t,1),,'nF

',=(ufr 
-L,',)u Y

(1s)

(16)

The overbar denotes the time average'

4. Viscous Forces
The friction forces do not depend on the structure

of the magnetic field, therefore the H-mode windows

can be affected only indirectly by the neutral gas

background. Viscosity - and in particular neoclassical

viscosity - exhibits strong dependence on the topology

of the magnetic field. For a stellarator plasma the

surface averaged viscous forces are

In axisymmetric tokamaks there is only a poloidal

variation of the magnetic field strenght, which leads to a

proportionality of all viscous coefficients

It,=A2*, ) Vt=AVp (J7)

There is no viscous damping force in toroidal direction'

In this case the matrix of viscosity coefficients in eq' 15

is singular. The same property is valid in any quasi-

symmetric system. In standard and advanced stellarators

the matrix is non-singular and any poloidal and toroidal

rotation will be slowed down by viscosity'

In summary we may conclude that at small radial

electric field the poloidal viscous force grows linearily

with the plasma rotation velocity and exhibits a strong

resonant character on rational magnetic surfaces' Strong

radial electric fields reduce the neoclassical viscous

damping and the poloidal force becomes a decreasing

function of the electric field. In this case the resonance

on rational magnetic surface has nearly vanished' The

effect of the electric field grows with poloidal mode

number n, which implies that the E-field is more

effective on high order rational surfaces than on low

order rationals.

5. Plasma Convection
It must be expected that the poloidal and toroidal

(,, o .n; = ((r,, - o,)",.YF)

(" .v. n; = ((r,,- r,)" #)
The formulation of the viscous forces given in eqs'

12 is valid in any regime ofcollisionality' In a collision-

dominated plasma the Braginskii viscosity leads to

forces, which show no strong dependence on the

rotational transform (ref. t5l)' In a neoclassical regime'

however, the viscous forces are dependent on the

rotational transform and the radial electric field [5]'

Solving the linearized kinetic equations allows one to

compute the anisotropic pressure in eq' 12' The

linearized equation is
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Rotational Transform

Fig. 1 Poloidal viscous coefficient pe vs rotational-
transform. Collisionality and electric field are kept
fixed. Additional resonant Fourier coefficients at l
= 10/19 and 10121 have been introduced

rotation have a feedback on the onset of plasma
convection. The simplest case occurs if 6y is the
classical diffusion velocity plus the pfirsch-Schliiter

effect. This velocity is independent of the superimposed
V6 and it leads to the classical Stringer spin-up.
However, this effect is computed without the dissipative
and inertial terms in the equilibrium equation and only
based on the resistivity in Ohm's law. Taking into
account that neutral particle interaction and viscosity
allow for a small pressure variation along magnetic field
lines this can give rise to convective solutions, which do
not exist in the limit without these dissipative terms. It is
obvious that a convective thermal flux is minimized if
the pressure stays constant on magnetic surfaces. The
parallel pressure balance yields

B 'Yp =- mrnofoB .v - B .N(v) (18)

/s is the charge exchange collision frequency. The
viscous term and the inertial term have been
summarized in the term N(r). The perpendicular
velocity is given by Ohm's law

The feedback of the pressure on the electric potential is
obtained from the parallel component of Ohm's law and
the perpendicular plasma current given by the
perpendicular component of eq. l.

. YpxB ^VO N(y)xBlL=-ru- -mtnofoi-*-t, - Ql)
The first term is the standard diamagnetic current and
the second one the current caused by the electric fietd.
In the following we neglect the contribution from
viscosity and inertia and approximate the equation of the
electric potential by

-v (^,noyo+g.*o,..| =, ('o=\ ery\'"""a',n"/ \g',l
This is a second order elliptic equation for the electric
potential. In the limitfi -+ 0 this property is lost and the
electric potential cannot be computed uniquely. Viscous
and inertial forces would add another fourth order
differential operator

(, \

M(Q) := v I -1. 1y[ VO<-^, r 
) x n I e3)lB'\B'l l

and instead of eq.22 we get

-( ^vo,--\-Y-lm,nofo -oi +r_ V,,<D | +M(iD)\ - n'l
=v (vp:n\ rrot\B'l.

In the limit of zero neutral density the term M(@)
must be retained. As a non-linear equation eq.24 can
have more than one solution and a bifurcation point can
exist, where these solutions merge. The bifurcation point
is determined by linearizing the non-linear equation
around one of the two solutions. Without the viscous
and inertial terms the eq. 24 is linear and has only one
solution at a given pressure gradient on the right hand
side. The viscous operator in M would not change this
result, however the inertial terms I(@) in N can give rise
to multiple solutions. Expanding the potential in Fourier
harmonics yields

(1e)

The first term in eq. 19 is a convective velocity
perperdicular to the magnetic field and the second term
is the classical diffusion velocity. Inserting this into the
equation of continuity provides one with an equation for
the pressure

ln\
-v.lnp Y:! +-P -v,,p l+V. o 

Vo;<B=s (20)
I B' mtnofo"l ' B

=loo\^u v+lI B' B'l*
This is a system of coupled differential equations

for the coefficients @-,(y). Any Fourier mode describes
a convective cell, which due to the boundary condition

u,-=V%tZ -\V
ir* - nr)2 e* 

[*" (*,,, r,*)],.

(2s)
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O.n = 0 on both sides of the slab does not calry particles

or heat across the boundary, but it strongly steepens the

temperature and pressure gradients and thus leads to

large radial transport. The first term in eq. 25 with the

resistivity is the largest one and retaining only this term

would yield an approximation, which is valid outside a

singular layer. This singular layer occurs in the vicinity

of rational surfaces with m-nr = 0, where the first term

is zero and the second term with the radial derivatives of

@.,(V) provides an upper limit to the @.,(ty).

Expanding the rotational transform around the resonant

surface allows one to derive an estimate for the width of

the singular layer. The result is

of another bifurcation. Furthermore, the non-linear terms

in the energy equation can lead to bifurcations. In

general, the bifurcation point is defined as the point

where the linarized equation have a non-trivial solution.

With respect to stability, this point is a point of marginal

stability (ro = 0). If a system approaches this point by a

slow parameter variation, the plasma can jump from one

stable solution to another stable solution.

6. Conclusions
The analysis has shown that a single fluid model of

plasma flow in the boundary region can describe several

features of the H-mode transition in
Wendelstein 7-AS. The force balance on magnetic

surfaces requires that in L-mode - here defined as a

state of small poloidal rotation- large convective motion

occurs in order to compensate the viscous or charge

exchange damping by means of the Coriolis forces. This

convective motion also leads to enhanced plasma and

energy losses. In particular, this convection can arise on

low order rational magnetic surfaces, since the singular

layer, caused by resistivity, viscosity and charge

exchange interaction is large on these surfaces- The

convection is driven by the pressure and temperature

gradients. As in the case of the B6nard convection,

when the viscosity is small, this solution can be unstable

leading to a state of turbulent convection, which also

drives the poloidal rotation.

Neoclassical viscosity is small on high order

rational magnetic surfaces and it is further reduced by

the radial electric field associated with the poloidal

shear flow. Therefore in those regions with high order

rational surfaces - the H-mode windows - small

convective motion is needed to provide the necessary

inertial drive. This also implies a reduction of plasma

losses. This well-balanced equilibrium between driving

and damping can be modified by the additional damping

due to charge exchange losses. By reducing this

damping term - which happens at density rise - this

damping is reduced, thus facilitating the H-mode

transition. Qualitavely this explains the experimental

result of a threshold in density. In this model described

above, the energy equation only plays a minor role. The

shear flow is governed by the interplay of the continuity

equation and the potential equation.

Since the present theory does not take into account

time derivatives of plasma parameters and the magnetic

field the issue of stability of these various stationary

branches remains open.

(26)

At the boundary of the singular layer the first and

the second term are of the same order. Retaining the

viscosity term in the operator M(Q) would lead to a

similar effect: the width of the singular layer would be

determined by the resistivity and the viscosity instead of
the plasma neutral interaction. Eq.26 shows that the

singular layer may be large in low-shear systems; it also

grows with plasma resistivity, which implies that any

increase of the temperature in the boundary region

would narrow the width of the singular layer.

Furthermore, the width of the singular layer and the

amplitude of the resonant components @.,(V) decrease

with rising poloidal mode number n.

Eqs. 20, 24 and the energy equation eq. 3 represent

a closed system of elliptic equations, which together

with appropriate boundary conditions allow one to

compute plasma pressure, temperature and the electric

potential. A basic issue of these non-linear equations is

the problem of uniqueness. If only one solution of the

system exists, bifurcaation and transition between

different states cannot occur. However in anology to the

classical B6nard problem several solutions can be

expected. The conditions for unique solutions of

equations 20 and22have been analysed leading to the

result that large dissipative effects (resistivity and

charge exchange losses) make the solution unique.

However, in a real plasma these effects are small and

more than one solution can exist' As a linear elliptic

equation 22has only one solution, the convective term

in eq. 20, however, couples convective motion to the

density variation and thus can give rise to convective

solutions. This is the equivalent case to the classical

thermal convection.

Retaining the inertial forces in eq. 26 would

introduce another non-linearity, which can be the cause

(,/(vl)'(av)'* *#
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