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Abstract
The motion of self-trapped electron vortices on a background vorticity gradient are studied

experimentally, and compared to numerical simulations and analytical theory for 2-dimensional
incompressible, inviscid flows. These vortices can be either clumps (vorticity excesses) or holes (vorticity
deficits). The vortices mix the background vorticity and tend to level the background gradient. As a
result, conservation of momentum dictates that clumps move up the background gradient, whereas holes
move down the gradient. The rate of this drift motion is dramatically different for prograde (rotating with
the background shear) versus retrograde vortices: a prograde vortex moves at a much slower rate than a
retrograde vortex, due to rapid nonlinear mixing of the flow field. We have measured the clump and hole
velocities for a wide range of vortex strengths, background gradients, and background shear rates. The
measurements are in quantitative agreement with theoretical predictions and numerical simulations.
When parameteized,by the dimensionless vortex strength (, lru (where I is the size of the trapped region
around the vortex, and ru is the vortex orbital position, representing a characteristic size of the
background streamlines). Experiments also show that the rapidly moving retrograde vortex leaves a spiral
density wake, and that instability of this wake eventually generates many long-lived holes, which
contribute to the late-time "turbulent" noise.
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1. Introduction
The free relaxation of two-dimensional (2D) tur-

bulence has been actively studied for decades, with
many applications in astrophysics, geophysics and
plasma physics. One relaxation mechanism is viscosity,
which causes the bulk kinetic energy of the flow to
slowly dissipate. However, 2D flows in plasmas,
atmospheres and oceans can rapidly relax to metastable
states before viscosity affects the dynamics.

Self-trapped 2D monopolar vortices, immersed in a

wide background vorticity distribution, are quite
common phenomena in nature and experimenrs;

Jupiter's Great Red Spot, hurricanes and ocean eddies
are just some of intriguing examples. A monopolar
vortex consists of a patch of fluid rotating around its
center, and self-trapped implies the background shear
does not destroy it. Generally, both mutual advection
and the interaction of vortices with the background
vorticity gradient play important roles in 2D hydro-
dynamics, including various aspects of relaxation toward
an ordered state and self-organization of turbulence. In
some cases, turbulence relaxes through the migration of
vortices to extrema in the background vorticity. Thus,
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the vortex/background interaction can cause the vortices

to move transverse to the direction of the background

flow, either up or down the vorticity gradient. This

applies both to magnetized non-neutral plasmas [1-4]
and to atmospheric and oceanic turbulence and eddies

[5-8]; on geophysical scales, the latitudinal variation of
the Coriolis acceleration gives a rotational shear in the

background (potential) vorticity gradient, called the

B-effect.
The prediction of hurricane tracks is a problem of

great practical importance, and a lot of theoretical work

has been devoted to the subject. Schecter and Dubin

recently performed a theoretical analysis of this problem

in the specific case when pointlike monopolar vortex of
relatively weak strength is placed within a diffuse,

circular vortex (background vorticity) [9]. Relatively

weak vortex strength means that the size of trapping

region in a background flow is much less than a
characteristic size of its streamlines. The analysis was

focused on cylindrical shear flow, where the flow
conserves canonical angular momentum. Conservation

of momentum then dictates that positive vortices
("clumps") move up the gradient, whereas negative

vortices ("holes") move down the gradient. Generally,

the vortex speed is proportional to the background

vorticity gradient; however, a vortex that is prograde

with respect to the background shear moves about 20

times slower than a retrograde vortex of equal strength.

Separate theories were given for the motion of prograde

and retrograde vortices. Both theories compare

favorably to vortex-in-cell (VIC) simulations and to the

experiment.

2. Simple Galculations of Gradient-Driven
Drift

We focus on specific case where initial background

vorticity ({r,0) is positive, axisymmetric and

monotonically decreasing with radius at t = O (Fig. l).
We neglect viscosity and consider flows that are

governed by the 2D Euler equations:

Y(=0, i=ixYV, Y'V=e . (1)

tlere,i(r,0,t) is the velocity tield., ((r,O,t) = ? ' V ,. J it
vorticity, and ty(r,0,t) is a stream function. The

coordinates (r,0) denote polar radius and angle, and t is

time. For analysis, the vorticity is decomposed into

vortex (v) and background (b): ( = (o + h.
As we used it before, the vortices can be classified

as either clumps or holes, depending of the sign of their

(a) (b)

Fig. 1 Schematic representation of an axisymmetric
background with either clump (a) or hole (b) on it.
Local mixing of the background increases (l)0. By
conservation of Pr. clumps and holes react
oppositely.

vorticity. In shear flows, in addition, they have to be

classified as either prograde or retrograde. A prograde

vortex rotates with the local background shear, while

rotation in the opposite sense defines retrograde

vortices. In presented on Fig. I background a clump is

retrograde and a hole is prograde.

We emphasize here that the conventional terms of
cyclones and anticyclones are not adequate to the

problem because they can be either clumps or holes,

depending on which hemisphere they are located in.

Also, prograde or retrograde refers not to the back-

ground rotation, but to the shear in the background

rotation.

The opposite drift of clumps and holes can be

easily explained by momentum conservation. Similar

arguments have been used to explain the motion of
phase-space density clumps and holes in plasma

turbulence [10]. We focus on cylindrical geometry,

where the flow conserves canonical angular momentum'

Pr: I d2r (r2 .

It is convenient to write Pe in terms of a back-

ground contribution and a vortex contribution,

Here 15 > 0 is total circulation of the background flow,

I, is the vortex circulation, r" is the radial position of
the vortex and (r2)6 denotes the (s-weighted spatial

average of 12. As shown in Fig. 1(a, b), both clumps and

holes partially mix the background vorticity and act to

level it. As the background is leveled, (r?)o increases,

since d(6ldr < 0. To conserve Pe, the clump (fn > 0)

must decrease ru and climb the background gradient'

whereas the hole (f" < 0) must increase ru and descend

the gradient.

When there is no local vorticity gradient, local

mixing does not affect the background vorticity

Pr= I d'rr2 ((r,o,t1=fo(r')o + f"r] . A)

d(
-+vAt
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distribution. Therefore, where d(,oldr = 0, there is no
local mechanism for the vortex to exchange angular
momentum or linear momentum with the background.
This suggest that clumps will settle on hills of the
background vorticity, and that holes will settle in
troughs, where d(6lAr = 0.

We now determine the radial speed of the vortex.
Single monopolar vortex consists of a patch of fluid
rotating around its common center. The vortex's
dominant translational motion is rotation around the
center of the background. We work in this rotating
frame, so the vortex is nearly stationary, and we defined
a local coordinate system centered at the vortex. Figure
2(a, b) shows the initial streamlines in the vicinity of a
retrograde clump (a) and a prograde hole (b). The
stagnation points in Fig. 2(a) are at distance l, above
and below the clump, where

(: (3)

is the trapping length, which depends on the clump
circulation and on the background shear (here, e6(r) is
the initial rotation frequency of the background).

We treat the vortex and the disturbance that it
generates as perturbations to the initial axisymmetric
shear flow (o(r) = (,"(r, t = 0). In case of a weak vorrex,
with trapping length much less than the streamline size,
i.e. (,lru << 1, it is possible to linearize the Euler
equations tEqs. (l)l to obtain the evolution of the
background vorticity perturbation. It is this background
perturbation that causes the vortex to leave its initial
circular orbit.

Using an unperturbed orbit approximation, after a
standard (but lengthy) calculations, Schecter and Dubin
have shown [9] that for sufficiently weak vortices the
time asymptotic radial drift of the vortex center is
approximately given by

retr
Fig.2 A sketch of initial streamlines in the vicinity of a

retrograde clump (a) and a prograde hole (b) in a
shear flow C)6 < 0. The center of a circular
background flow locates far above the drawings.

trapping length l,, which serves as a small length-scale
cut-off. Thus, the linear theory breaks down for times
greater than the orbital period of a fluid particle located
initially at distance > (. from the vortex center. For a
retrograde vortex [Fig. 2(a)), the fluid particle is in the
outer trapping region, and its angular velocity R(| (. (in
the rotating frame) tends to zero for small vortex
circulation; whereas the length ofthe trapped orbit tends
to a finite vallue of 4nr,. Thus, for retrograde vortex, the
orbital period diverges to infinity as the vortex strength
goes to zero. For prograde vortex [Fig. 2(b)], the fluid
particle has an orbit of length of 2tc{, and orbital velocity
that is also proportional to l; therefore the orbital period
remains constant as the vortex strength goes down.
Thus, the time scale for the linear theory to fail becomes
"instantaneous" relative to the time scale of vortex
motion.

However, a workable estimate of the radial drift
velocity of prograde vortex can be obtained using
simple "mix-and-move" analysis; here the prograde
vortex substantially flattens the mixing layer, and moves
a distance determined by conservation of angular
momentum during the time needed to flatten the mixing
layer. Suppose that the vortex levels the entire mixing
layer and has a negligible effect on fluid outside the
mixing layer. This mixing increases the background
component of Psby an amount

LPe.a=-an('orl13

o)

(4)

Here, '+/-' is for clumps/holes, and c is a factor of order
1, determined by ru and the form of (s(r).

However, by comparing this analytical prediction
with results of VIC simulations [9], Schecter and Dubin
have found that the linear equations of motion apply
only to retrograde vortices, and that nonlinear effects
must be kept to explain the slower drift of prograde
vortices.

Linear theory breaks down when the trapped fluid
becomes mixed over a length scale greater than the

!'= xthl'tn1c.r"/().

By conservation of Pe, the hole must increase ru by an
amount Ar. Assuming that Lrlr, < l, we have

(s)

(6)o,:+=(*.
To obtain the hole velocity, we also require an

estimate of the time Ar for the mixing layer to flatten.
Presumably, this time is given by the orbital period of a
fluid element near the separatrix that encloses the

l, /2nr,dlloe,)
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mixing layer. Since the angular speed of this fluid

element is lC)6l I (in the rotating frame), and the orbit

covers 4E radians (2zr in both directions), we have

bounce motion of individual electrons in comparison

with the column bulk rotation time (- 50 ps) effectively

averages over any z variations. Together with small

electron gyro-radius (- 10 pm), it allows us to use the

2D E x B drift approximation [11,12] of the system

macroscopic dynamics

4 *i. Vn=0, i =2xcYrpl B, Y'rp=4nen. (9)
dt

which is isomorphic to the 2D Euler equations [Eqs.

(l)1.

Comparing the drift-Poisson equations (9) to the

Euler equations (l), we see that the vorticity ((r'q't) is

directly proportional to the electron density n(r,4't), i-e.

€ = 4necnlB; and the stream function ty(r,9't) is directly

proportional to the electrostatic potential E(r,0,t), i-e. ty

= calBt while nonzero dtPldr at the wall corresponds to

the free-sleep boundary conditions. Therefore' the

vorticity is simply advected in the incompressible flow

with electron density, the streamlines conform to the

equipotential surfaces, and vorticity measurements are

equivalent to density measurements.

In the experiment, we first inject and trap a stable

quiescent column with monotonically decreasing and

cylindrically symmetric initial density profile ns(r).

Then, we either create a narrow hole of radius pu < Ro

at the center of electron column by temporarily

decreasing the confinement voltage at one of the end

cylinders and allowing electrons to escape from the trap;

or combine the column with a small peripheral clump

(which is prepared in adjacent trap). The column with

either a clump or a hole then evolves for time t, aftet

which the electron column is dumped axially onto a

phosphor screen. The 2D density image n(r,O,t) is

recorded with a CCD camera, and €(r,0,t) is obtained

Sr,4l}

Fig. 3 Experimental apparatus (Penning-Malmberg trap)
for 2D fluid experiments with magnetized electron
plasmas.

Q)

Finally, the velocity of the prograde vortex is given by

dr, - Lr 
= _L tr (r. (s)

dt Lt 4x

Note that the l-scaling in linear theory [Eq. (4)]

differs from the l-scaling in Eq. (8) by a factor of

ln(c.r"ll). Therefore, our estimate suggests that a

retrograde vortex, which foltows the linear theory, will
move much faster than a prograde vortex for (' lr, < I'
On other hand, when I /r, - l, the ratio between the

radial velocities of a retrograde vortex and a prograde

vortex will be about 2tt2.

3. 2D Fluid Experiments with Magnetized
Electron Plasmas

Many features of turbulent relaxation processes in

2D Euler fluids have been studied using electron

plasmas confined in a Penning-Malmberg traps [1-4].

Conventional fluid experiments are difficult to

manipulate and diagnose, and are subject to undesired

viscous and boundary effects. With low viscosity,

circular free-slip boundary conditions, simple

manipulation technique, and accurate diagnostics,

magnetized electron columns provide excellent

opportunities to study 2D turbulence. However, few

experimental studies have quantitatively measured 2D-

vortex motion in a shearing background flow. So far,

laboratory observations have been reported by Huang et

al. t21, who measured only a single datum of the drift
velocity of two holes down a vorticity gradient; and

more recently by Kiwamoto et al. [4], who' on the

contrary, only examined the dynamic behavior of
electron clumps immersed in a background vorticity.

The experimental apparatus used at UCSD [2'3] is

shown in Fig. 3. Electrons from a tungsten filament are

contained inside a series of conducting cylinders of

radius R* = 3.5 cm enclosed in a vacuum chamber (P -
10-10 torr) with uniform axial magnetic field B = 4 kG.

The magnetic field provides radial confinement, and

negative voltages (% = -80 V) applied on the two end

cylinders provide axial confinement. A trapped electron

column typically has maximum density ne - 107 cm-3,

radius Ro = 2 cm, axial length Lp = 35 cm, and electron

thermal energy T" = | eY - The rapid (- 1 ,tis) axial

4|tLt =-.
lnilr
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directly. Although this imaging technique is destructive,
the shot-to-shot variations for nearly identical initial
conditions are small (< l%o in azimuthally averaged
local density), so that the time evolution of a flow can
be studied.

Figure 4 shows a typical example of background
vorticity (s(r) and rotation frequency C)s(r) profiles, as

well as a profile. The chosen background vorticity
distribution represents a large class, where plasma
density decreases radially outward, and the radial
derivatives of 9-averaged (6(r) and Q6(r) vary slowly
within r < Ro. Their characteristic values, used in the
current experiments, were in the bands 50 < 6d < 500
msec-r cm-r and 10 < C)6 < 50 msec-l cm-l, so that the
condition of non-critical shear strength I9l 6,i/O6 > 1 is
always satisfied.

We can easily create clump (or hole) characterized
by approximately "gaussian" density (vorticity)
distribution with the maximum density zu comparable to
the background density scale n6, and the characteristic
radial extent p, > 0. lRp = 0.2 cm. In this case, the
accessible region of vortex strengths is p"/Ro < | lr, <
(Rrlp,)t'', i.e., 0.1 3 (,1r,3 3. Thus, we can compare our
experimental results to the linear analysis of vortex
motion for (, /r" < 1, and also obtain results where the
theory is invalid at (,lrn - l.

Figure 5 shows the evolution of the measured
vorticity distribution when either a clump or a hole is
added to the initially symmetric background. The upper
example [Fig. 5(a)] shows a retrograde clump climbing
the vorticity gradient; whereas the lower sequence of
images tFig. 5(b)l shows a prograde hole moving down
the gradient. Here, time is measured in units of the
background's rotation period, r: l/Cls(r,). Apparently,
there are quite different time scales for these two series.

The clump moves an order of magnitude faster than the
hole.

4. Analysis
Our experiments with retrograde clump placed

initially at plasma column periphery (ru = Rp) have
shown that the clump rapidly (t < i accelerates to an

approximately constant radial velocity, and then spirals
toward the center of background vorticity. The radial
velocity of the clump increases with its circulation l"
and background vorticity gradient (,i, while it decreases

as the local rotational shear Q[ intensifies. While the
clump approaches close to the center of the background
(r, - p,), within a time of a few orbiting periods it
forms a dipolar structure, which is out of present

n$] R
K'

a 0.5 1t.5 2 2"5 3 a5 4

r (cm)

Fig. 4 Graph showing the radial cross-sectional
distribution of the vorticity (o of a typical
background flow, its rotation frequency f,)., as
well as radial position and the vorticity of a
generated clump (",u.0 (dashed line).
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Fig.5 The vorticity dynamics in two different experi-
mental series: (a) motion of a retrograde clump,
starting at the periphery, and (b) motion of a
prograde hole, starting at the center. The
repetitive vorticity grayscale is linear. The outer
arcs indicate the wall radius B*"u = 3.5 cm. Time is
measured in units of the vortex's rotation period,

consideration. Figure 6 shows a sequence of measured
radial velocity points for retrograde clumps of different
strength {, /r,. ln the plot, the radial velocity is
normalized to r,2 ([ to emphasize the vortex strength
characteristics of the motion. The plot also shows the
results of linear computations tEq. (a)l and VIC
simulations [9]. There is a good agreement between
experimental results, theory and VIC simulations in their
intersection region, where 4 lr, << l. In this linear
regime, the radial velocity scales as dr,ldt * (,2((.

2.5

2

1.5
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"fl{xlffs')'

0.5
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Moreover, the measured velocity shows the same trend

in the transition region ( lr, - 7.

Experiments with prograde holes clearly show

much smaller radial drift velocities. A centered hole is

an (unstable) equilibrium, but it eventually moves off
axis; in Fig. 5(b), this takes about 602. For comparison

to theory, we consider the hole motion only when it is
off-axis. When the hole has moved off center by a

distance comparable to its size, it moves with a nearly

constant radial velocity, and then spirals down the

background vorticity gradient. As was the case for a

retrograde clump, the hole's radial velocity scales as

druldt n 12 ((, bu;t it is approximately 20 times slower.

Unlike the clump motion, the hole needs tens of orbital

periods to move radial distance of Rrl2 and reach the

plasma column periphery.

Figure 6 shows the measured radial velocities for
prograde holes of different strengths. The plot also

shows the "mix-and-move" estimate tEq. (8)l and data

from VIC simulations, as well as the early
measurements [2] of two small holes moving at the

plasma column periphery. Again, like the case of
retrograde clumps, one can see a quantitative agreement

between the experiment, the "mix-and-move" estimate,

and the VIC simulations for the prograde holes. We note

again that the hole moves at much slower rate not

because the hole has a negative vorticity, but because

the hole is prograde with respect to the background

shear flow in our experiments.

The experiments also show that a clump can get

"stuck" in a region of a small vorticity gradient (Fig. 7).

Here, the background vorticity has a shoulder with low

local gradient ([ and high rotational shear Q[, so that

the mixing layer gets flattened before the vortex can

move. Thus, the local mixing will not affect anymore

the background vorticity distribution. Eq. (6) predicts

that a vortex will not pass over a flat shoulder in the

background vorticity distribution if Lrl(, = (6/A6< l.
Figure 7 shows the background vorticity versus radius,

and the radial position of the clump as a function of
time (dots). The clump starts climbing the gradient and

then stops moving radially at r = 1.5 cm, where the

clump reaches the shoulder with clump-weighted (,{/Ai

= 1, and then, in accordance to expectations, it settles on

this shoulder to be eventually dispersed into the

background.

Even more strikingly, the experiments show that

the "wake" behind a moving clump can generate

secondary holes and turbulence. Figure 8 shows the

azimuthally asymmetric components of the perturbation

8.1

a.al

lr, / (i' r, I

o,Nl

0.awl
0.a1 0.'( t

$ir,

Fig. 6 Radial velocity drldt for retrograde clumps and
prograde holes versus vortex strength I'lr, in
linear theory (solid curve, Eq.4, c = 0.43)' "mix-
and-move" estimate (dashed line. Eq. 8), linear
simulation (x's), VIC simulations (o's and o's)'
and experiments (r's and O's). In the plot, dr"/dt is

normalized to r,2([ to emphasize this speed as a

function of the vortex strength l/r".
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:.i.'
t-r ,' Ii { i r loI I '.ro'--o
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;t0
2.5
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Fig. 7 Stagnation of the climbing clump motion on a flat
shoulder of the background vorticity. Here, the
gradient/shear strength parameter $l0it is
averaged over the clump scale. Note that only the
periphery (1 cm < r < 2.5 cm) of the vorticity
distribution is shown here.

to the background vorticity at different times during an

ascending clump motion. The symmetric (0-averaged)

component of the background vorticity has been

subtracted from the raw images, leaving only the

asymmetric component. To conserve the total canonical

angular momentum, the moving clump redistributes the

background vorticity, which forms a spiral wake with
low density at its inner side and increased density at its

outer side. The wake gradually spirals outward [Fig.

1.5
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-lxtoss'rX 6q , lxl0rs't

*

5.8 r

(a) a spiral coil

15.,1 r

O) a "'sed'eif holes

Fig. 8 Evolution of the background vorticity during a
climbing clump motion. The images show only
non-axisymmetric perturbations 6((r,0,t) of the
O-averaged background vorticity (o(,if ).

8(a)1, and eventually evolves through high m-modes of
the Kelvin-Helmholtz instability into a set of small holes
located near the plasma periphery tFig. 8(b)1. Typically
these holes are evenly spaced in 0 and have close values

of ru. The slow drift of these holes out of the vorticity
distribution controls the later stage of relaxation of this
"turbulence" toward an ordered state. Descending spiral
motion of prograde hole does not form such kind of
wake due to fast and more thorough mixing of the
background vorticity.

5. Conclusions
We have measured the radial drift velocities of

finite-sized clumps and holes moving up and down
vorticity gradient for a wide range of vortex strengths,

background gradients, and background shear rates. All
measurements are in quantitative agreement with recent

theoretical analyses for weak vortices, and with
numerical simulations.

Clumps and holes move in opposite directions and

at substantially different rates. Both types of vortices
mix the background vorticity and act to level its
gradient. However, conservation of angular momentum
dictates that clumps move up the background gradient,
whereas holes move down the gradient. The rate of this
motion is determined by whether the vortex is prograde

or retrograde with respect to the local background shear:

a prograde vortex moves at a much slower rate than a

retrograde vortex. Sufficiently strong shear breaks down
the "mix-and-move" model and can completely suppress

this vortex motion on a gentle slope of a background
vorticity.

A rapidly moving retrograde vortex leaves a spiral
density wake, and instability of this wake eventually
generates many longJived holes, which contribute to the
"turbulent" noise and slow down the relaxation rate.

Finally, we note that there is obvious discrepancy
between the experimental dynamics and the point-like
vortex theory computations when the vortex of real
finite size gets close to the background center, where it
forms a dipolar structure and exhibits a slowly decaying
oscillatory motion. This finite scale behavior merits
further study.
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