
J. Plasma Fusion Res. SERIES, Yol.4 (200D 23-28

Electrostatic Localized Structures in Collisionless Plasmas
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Abstract
The relationship between a localized structure and a dispersion relation is investigated. The region of

real phase velocity and imaginary wave number guarantees the existence of a sheath, a soliton and a
phase-space hole, and suggests a new coupling state of an electron hole and an ion soliton (CHS). A
computer simulation verifies that CHSs exist and propagate stably.
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1. Introduction
In plasmas, there exist various types of electrostatic

localized structures: sheaths, solitons and phase-space

holes etc. Sheaths and solitons are well known. Thus,
we review simply phase-space holes (holes or phase-

space vortices) [1]. Holes were found in computer runs

simulating two stream instability [2]. Experimentally, an

electron hole was discovered in a collisionless plasma of
Q-machine [3]. The ion version of the hole was
observed in DP-machine [4]. This ion hole has an

important role on the anomalous electrical resistivity
and the formation of ion acoustic double layers [5] and

double layers [6]. On the other hand, the data of the

spacecraft, GEOTAIL, recently revealed that most of the
BEN (broad-band electrostatic noise) in the plasma of
the geomagnetic tail is a series of electron holes [7].

These structures of sheaths, solitons and holes must

be free of wave emission to maintain themselves.
Accordingly, in chapter 2, we show the relationship
between localized structures and dispersion relations.
The tails of these localized structures are regarded as

nonoscillatory and propagating evanescent waves with
real phase velocity u and imaginary wave number ft1

determined by the dispersion relation. In case of an

unmagnetized plasma, ion holes belong to the region z <
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{5v,;. On the other hand, both electron holes and ion
acoustic solitons belong to the region., <, < {3u,..
Thus, the dispersion suggests the existence of a coupled
state of an electron hole and an ion acoustic soliton
(abbreviated to a coupled hole-soliton or a CHS). Here,

Vd, v." ruld c. are ion and electron thermal speeds and ion
acoustic speed.

In chapter 3, we present experimental data of ion
phase space holes. In chapter 4, the existence of a

coupled hole soliton is revealed by a computer
simulation and the theory of Saeki and Rasmussen [8].

2. Relationship between Localized
Structures and Dispersion Relations
In plasmas, waves and nonlinear localized

structures are important concepts, and are deeply related

to dispersion relations. An ion acoustic soliton is one of
typical electrostatic localized structures. Thus, we take
up the dispersion relation of ion acoustic waves,

(l)

and consider its relation to the ion acoustic soliton.
Here, g, ftpu and api ara plasma dielectric constant,
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electron Debye wave number and ion plasma angular

frequency, respectively. The relation between the phase

velocity u and the wave number /c is expressed

schematically in Fig. 1. In the region that the phase

velocity z is equal to or smaller than the ion acoustic

speed c' the corresponding wave number is real, and

normal ion acoustic waves propagate. On the other

hand, the region of a > c, gives pure imaginary wave

numbers ft,

k,=^r[ k'*- rrorlrt = t n1[2(M- l),

(M-1<< t) (2)

and presents an ion acoustic soliton and an ion sheath.

Here, M (= ulc") is Mach number. The tails of the ion

soliton can be regarded as nonoscillatory and

propagating evanescent waves being proportional to
exp(-ftx) and exp(-ftir) on both sides. Thus, a disper-

sion relation determines the tail of a corresponding

localized structure.

The form of an ion acoustic soliton is determined

as follows. When we observe a soliton in the moving
frame of the soliton speed u, the following conservation

equations of ion energy and ion flux is maintained.

Ion Acoustic Soliton

L=zlk'
/'n\*",/- A -\_ek, ,,/ 

...€'

--'/
Dispersion Relation

,, ,.2

e :eo(l +W-ffi):0.

ion soliton localized
structure

ion sheath ProPagation

ion acoustic wave
wave propagation

kat

Fig. 1 Relation between an ion acoustic soliton and a
dispersion relation. The imaginary wave number
/q derived from the dispersion relation determines
its tail shape and its width A.
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\ m,{- u )' = L m,rl (i - e QG),
.L

nn(-u) = ni(x)vi(x)'

Here, mi, vi, Q, ni and ns are ion mass, ion velocity,

soliton potential, ion density and equilibrium plasma

density, respectively. In order to close the system

describing the soliton, we need Boltzmann relation for

electrons and Poisson's equation,

t?.(x)= nor*P'OV),

qg 
=_L(n.(x)_ni@D.dxt €()

Here, n", r and Z" are electron density, Boltzmann's

constant and electron temperature, respectively. After
the calculation based on the above equations, we obtain

the following equation,

49 =""n4- M(M'-zy)-'o .

oz-

Here, we normalize the quantities as z = kDex, and O =
eQlrcT.. By integrating the above equation multiplied by

d@ldz from -@ to {, we derive Sagdeev's potential

v(o),

v(9 = 1 - exp@ + M (M - (M' - 2o)-'o ),
=-(M- l)@2+@3/6, (O<< 1)

which satisfies (11\@Al0d2 + V(<D) = 0. The solution

of a small-amplitude soliton is @ = 3(M - 1) sech2 {M
- l)12x. In laboratory

Q = Q^u*r".r.,, (" -^" 
) 

.

il-c, 
=_2 =€Q^cs k'o"L' 3KT 

"

Here, @-u* is the maximum potential of the soliton.

Thus, the relation between the width of the soliton A and

the soliton velocity a is as follows.

t ' 
- 

\"=ko"{2(1il-t). (3)i=ko"V 2\u-csll

Comparing Eq. (2) and (3), we get L = 2lki, which
means that the width of the soliton is determined by ft in
case of small amplitude solitons. Thus, in case of ion

acoustic solitons, the dispersion relation determines not

only the form of their tails but also their width.

Now, we extend this consideration to the case of an

unmagnetized uniform plasma, the dispersion relation of
which is written as,

.,^
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| . 0)?- a',, \ .€= tsf I-- --F - rL , l=0. (4)

I k'( u, -y"rl") k'lu, -y,rl,) I\/
Here, y", y, and ao. are specific heat ratios for electron
and ion and electron plasma angular frequency,
respectively. y,,ris 3 if z >> v,",,1, and is I if u << v,.,,1.

When the phase velocity u is around the thermal
velocity of electron and ion v1".6, the wave number ft is a
complex number and gives energy dissipation. The
relation of u and ft calculated from Eq. (4) is shown in
Fig. 2. The regions of propagating electron waves and
ion acoustic waves of real ft appear when u > i3v,. and
c" ) il ) fiu6, .espectively. On the other hand, the
localized structures belong to the regions of non-
oscillatory and propagating evanescent waves of
imaginary ft. Ion phase-space holes are able to propagate

with a speed of z which is smaller than r/-3v,,. Their tails
of small perturbations must decay according to the

electron
plasma
wave

Gorpld
hole
soliton

ion acoustic
wave

ion hole

kn $L+r'g'n tt
Fig. 2 The relation between phase-velocity u and wave

number k in case of an unmagnetized uniform
plasma. The figure shows the existence regions of
an ion sheath and electron and ion holes, ano
suggests a new coupling state of an electron hole
and an ion soliton (CHS). kDi and ko, are wave
numbers for electron and ion. respectively.

imaginary wave number ft derived from the dispersion.
In a like manner, ion acoustic solitons and ion sheaths
exist when c" < u, and electron phase-space holes exist
when u . !5u,". Thus, the region c. < , <.,llrr"includes
ion solitons and electron holes, both of which have
positive potential humps. Thus, this region suggests us a
new localized structure being a coupled state of an

electron phase-space holes and an ion acoustic solitons
(CHS), which will be discussed in chapter 4.

3. lon Phase-Space Hole
Ion phase-space holes belong to the region , < tl3rr,

as shown in Fig. 2. The experiment has been performed
in a double-plasma device which allows us to inject
argon ions steadily or as a pulse into an argon target
plasma. Typical plasma parameters are as follows;
plasma density n6 - 108 cm-3, electron temperature fe -
2 - 3 eY and ion temperature Ti - 0.2 - 0.3 eV, with
neutral-argon-gas pressure - (O.7 - 3) x 10-4 Torr. Thus,
ion plasma frequency 

"fpr - 300 kHz, and ion acoustic
speed c, - 3 x 105 cm./sec. An energy analyzer is used to
detect the temporal behavior of ion energy. The obtained
ion distribution function is displayed on a phase space

of energy and time.

The temporal evolution of a plasma penetrated by a

pulsed ion beam (pulse width - 3/fr) is shown in Fig. 3

with a beam injection voltage @o as a parameter. Here,
the intensity of brightness in Fig. 3 is derivative of
energy-analyzer output with respect to reterding voltage,
and means ion energy distibution function depending on
energy mv212 + eQ and, time T. m, vi and @ are ion mass,

ion velocity and plasma potential, respectively. The
brightness changed sharply at a fixed value of energy
distribution function. The beam injection voltage @5 is
varied up to 8 V. When @6 = 0.5 V, we have a normal
soliton signal on the phase space of energy and time.
The hole is formed on the phase space when 0r = 1.5 V,
which injects a pulsed ion beam with a velocity faster
than the ion acoustic speed c". Each ion hole propagates
with a constant velocity. The hole size and the hole
speed get large as @6 increases. The hole length varies
within the extent of 0.5-l cm, and the hole speed is
(1.7-2) x 105 cmlsec. The too high @6 gives a burst
formation accompanied by a broad density depression
and induces no hole formation. Higher pulse voltage @o

excites a hole of a higher speed. Thus, we can excite
two holes with different velocities. The coalescence of
two holes into one large hole are also observed in phase

space. An ion hole is incompressible in phase space in a

collisionless plasma and behaves as a macroparticle.
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Fig. 3 Hole excitation by pulse injection of ion beam.

Application of small pulse excites a normal ion
soliton. Pulse voltages more than 1.5 V accelerate
ions to the same order of ion acoustic speed and
excite ion holes. Too big pulse voltages lead to no
excitation.

Ions surrounding an ion hole are pulled by another ion

hole of negative potential. Two ion holes accordingly

attract each other like negative mass particles and unite

into one hole. Thus, an ion hole is regarded as a
negatively charged macroparticle with negative mass.

4. Goupled Electron Hole and lon Acoustic
Soliton

The region c" I u <fiv," in Fig. 2 suggests the

exitence of a coupled state between an electron hole and

an ion soliton. We adopt the electrostatic simulation of
particle-in-cell (PIC) model with one dimensional

coordinate x to find such a coupled state. In the case of
immovable ions (mass ratio of ion to electrot rfiilm" =

-), an excited electron hole with a propagation velocity

a = 0 is very stable in phase space. On the other hand,

the stability of this electron hole in the case of movable

ions (milm.= 100) is shown in Fig. 4, where the spatial

structures of the normalized plasma potential eQlrcT",

the electron phase fluid in phase space (xlLs, v"lvr) and

the ion phase fluid in phase space (xlhe, vilc") ate

demonstrated. Here, vr = 'IKTJfi. v" and )'e are

electron velocity and electron Debye length,
respectively. v; is ion velocity, and c. = {rT"/mi is ion

acoustic speed. T = op.tl2lt is normalized time. The

system length is l25he and consists of 3000 cells. Each

-!o o 60

xfTo
{OOm{oO60

,rLD x/^D

Fig. 4 Electron hole disruption and formation of coupled
hole solitons CHSs observed in phase space lxl\,
v.lvrl, in phase space (xlh, vtlC"l, and as spatial
potential variation eQlkT". m/m" = 100' f = cor.tl2tr

is normalized time.

number of ions and electrons per unit cell is 1000. The

temperature ratio of electron to ion T"lTi is 40 [9].
The positive potential of the electron hole causes

the compression of ions on both sides of the hole. The

resultant ion perturbations deform the hole itself and

disrupt the hole into two holes. Apparently these two

holes propagating in opposite directions to each other

are accompanied by compressional ion pulses and form

new solitary structures propagating stably' Each

structure comprises an electron hole and an ion acoustic

soliton, being regarded as a coupled state of an electron

hole and an ion acoustic soliton, a coupled hole-soliton

(CHS). The disruption mechanism for an electron hole is

as follows. Each compressional ion pulse induced on

both sides by the positive potential of the initial electron

hole has also a positive potential. This positive potential

of each ion pulse pulls the electrons surrounding the

hole from both sides of it. In other words, the electron

hole behaves as a macro particle having positive charge

and negative mass [2], thereby being dragged by the

positive potential ofeach ion pulse. As a result, the hole

is elongated and divided into two holes. This drag is

also the mechanism to maintain the stability of the CHS'

where the positive potential of the ion acoustic soliton

attaches the electron hole to the soliton.

We try to derive the theoretical relation between

Mach number M = ulc" and the maximum potential @^"*

= eLlrcT. of CHSs, according to ref. [8]. The spatial

structure of a CHS in the moving frame of a CHS

propagation velocity u is illustrated in Fig. 5. For

simplicity, we assume a rectangular velocity distribution

function of electrons; its spread and height are 2vr and
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ebcbon

1-dt

Fig. 5 Spatial structure of a coupled hole-soliton CHS (a
coupled state of an electron hole and an ion
acoustic soliton) with a propagation speed u
under the water bag model. Upper, middle and
lower figures indicate potential, electron phase
fluid and ion phase fluid, respectively. M = ulc.,
Q^"*= eQ^u*lkT., a= lm"/m,)1/2, and Wot.z,z= voj,z.sl
vE.

ll2vr at .r = t-, respectively.

vs is the velocity v" of the electrons at v2 = S that have
no kinetic energy (v" = 0) at x = *-. The ion
temperature is assumed to be zero. Therefore, the spatialxlh 
dependence of ion density 4(-r) as a function of @(x) is
also calculated from the followins consevation
equations of ion energy and ion flux,

1.2 1,
ilLo i*tf-u)'=Lm,vl-eQ,

no(-u)= n. v .

Poisson's equation, azQ@)ldx2 = e(n"(x) - ni@))leo,
relates 0(x) to ni(x) and n"(-r). Normalizing the

,- quantities as z = xl^.D, Q = e|lrT", and W6 = yolvrc, wevl'D obtain the following equation,

# = +{t, t - aM)2 +zo]'o *l{r + arw)'. r.]'"}

- eewS+zos[-wi*zo]'o

-M(M'-zo)" .

Here, z = xlLo, Q = eQlrcT., Ws= vs/:u', s( = 7m"lm)tt2.
By integrating the above-mentioned equation multiplied
by 0Allz from * to z, we derive Sagdeev's potential
V(@, M,l,Yo, a) t101,

v(Q, MWo,a1=-* 
{t,r -aM)'+2d|1

Here, Equation (5) is valid when aM < l, and we put
V(O, M, Wo, a) = 0. V(@, M, Wo, o) satisfies (llD@Al
3z)2 + V(0, M, Wo, o) = 0. The CHS has a maximum
potential Q-* satisfying y(O.*, M,Wo, d) = 0.

On the other hand, the hole area S of the CHS in
the electron phase fluid is calculated as follows.

Here, S is a function of @-u*, M, Wo, and a. Thus, by
eliminating Wo, the equation V(@.u,, M, Wo, o) = 0 and
Eq. (6) yield the relation between M and (D-u* with S

and d as parameters. The theoretical M - Q^ * relation

f.(v",x =t-)

t ,, ,,,"

\o

(-v,"-u3v.1 vn-u)
(v"S- vt -u, vr"-u3v")

Thus, we are able to calculate the spatial electron
density variation n"(.r) as a function of @(.r) from the

electron velocities on the boundaries of the electron
phase fluid v1, v2and v3, being the velocities on upper,
hole and lower boundaries of the electron phase fluid,
respectively.

v, +l vrl-zl v,lo,'r)
4,.LVre

Here, ns is the plasma density at x = t*, and 0(.r) is
step function. 11, 12, v3 are derived as a function of Q@)
from the following energy equations,

voi,z,3 = t nWo,r,r.,.

i.*.rr,- u)' = L *"r? -, Q,

-).^"'3=Lm.v?-e0 '

i,*.r-r*-u)' =Lm"v?- eQ .

* [tr + aM)2 +r*]1 - (r - aM)3 - o. ** r'l

* 
trt f- 

*', + zo;f - wi + za]tr

*ufu-ru'-zoyl] (5)

n"\x)= no
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Fig. 6 Relation between the Mach number M and the
maximum potential o.", of CHSs with hole area S
in electron phase fluid as a parameter. ., o and
A are experimental points. milm" = 100. Here,
CHSs of S = 0 mean pure ion acoustic solitons,
and the dotted line lA = M'?l2l indicates the critical
line of ion reflection due to the CHS potential @.

of CHSs in the case of a = 0.1 (milm" = 100) is plotted

with S as a parameter.on Fig. 6. The dotted line
expresses Q = trFl2, and means the critical line of ion

reflection due to the positive potential of CHSs. When S

becomes finite, the Mach number M of the CHS

increases. The aspect (height-to-width) ratio of the

elliptic hole in the electron phase fluid grows along the

theoretical curve of S = const. with an increase in @-u*,

The large Mach number gives pure electron holes.

Hence, Fig. 6 provides the unified description of pure

ion acoustic solitons (S = 0), coupled hole-solitons and

pure electron holes (M > 1). The theoretical curves well

explain the experimental data.

5. Conclusions
(1) The dispersion relation (the phase velocity a

versus the wave number ft) suggests the possible

region of existence for localized structures,

where z is real and k is imaginary. The char-

acteristic length of the tail of localized structures

propagating with a speed z must be llki.
(2) In case of small-amplitude ion solitons, 1/k1

means not only the characteristic length of the

soliton tail but also a half of the soliton width.

(3) From the dispersion relation of an unmagnetized

uniform plasma, we can expect the existence of a

localized structure coupling between an electron

hole and an ion soliton, in addition to an electron

hole, an ion soliton, an ion sheath and an ion

hole.

(4) The phase-space observation of ion holes reveals

their dynamics in phase-space. The pulse

injection of ion beam causes rolling up the

phase-space region of no ion and forms

symmetric ion holes. The injected beam velocity

v6 rnust be higher than the ion acoustic speed c..

The excited ion holes are stable during their
propagation.

(5) An electron hole whose velocity u is slower

enough than the electron thermal speed v,"

interacts strongly with ions. The ion motion

induced by the electron hole gives rise to the

hole disruption into two or more holes.

(6) The disrupted holes are coupled with the ion

perturbations and form coupled states ofelectron

holes and ion solitons (CHSs). These coupled

hole solitons (CHSs) are stable during their
propagation.
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