
J. Plasma Fusion Res. SERIES, Vol. 3 (2000) 609413

Velocity Distribution in the Edge Region of a Steady
State Field-Reversed Configuration

TAKAHASHI Toshiki*, JIMBO Shigeaki, KONDOH Yoshiomi and MOMOTA Hiromul
Faculty of Electronic Engineering, Gunma University, Kiryu 376-8515, Japan

f Department of Nuclear Engineering, University of lllinois at Llrbana Champaign, USA

(Received: 18 January 2000 / Accepted: 7 April 2000)

Abstract
Considering collisions and adiabaticity breaking processes at X-points of a field-reversed

configuration (FRC), we derive the kinetic equation for the edge plasma. Velocity distributions of ions
and electrons are obtained in a case that collisions alone are considered. We also propose the algorithm to
determine the ambipolar electrostatic potential at mirror points.
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1. Introduction
Field-Reversed Configuration (FRC) is one of the

most attractive alternative confinement plasmas to
tokamaks, which has no toroidal field and consequent

relatively high beta value. Main mechanism of particle
transport between FRC bulk and edge region (outside

the separatrix) has not been proved so far by both
theoretical and experimental studies [-5]. In terms of
transport in the edge plasma, particles are trapped in the

open minor field, and those mirror loss rates are found

recently to relate with the ambipolar electrostatic
potential, which affects confinement of bulk plasmas

[6,7]. Since FRCs have, however, field-null X-points on

axis and separatrix, the particles suffer from
collisionless pitch angle scatterings and resultant
adiabaticity breaking processes [8,9], which enhance the

mirror loss rate of ions. Thus, it is important to
investigate physics of collisionless pitch angle scattering

at X-points and to formulate the kinetic equation for
edge plasmas.

In this paper, we concentrate on the kinetic
properties of the edge plasma particles. Section 2 is
devoted to explain the particle transport and loss

processes, including in the kinetic equation. In Sec. 3,

we present results and discussions, and finally we
summarize this paper in Sec. 4.

2. Particle Transport in Edge Region
Plasma particles inside the separatrix are diffused

out due to the cross-field transport, whose dominant
mechanism for FRC, however, have been unproved as

yet. After crossing the separatrix, particles move toward
X-points because of -F. .VB force. Therefore, particles

in open-line field have reciprocating motion around X-
points. If particles move adiabatically, those entering the

loss cone are passing through the mirror points and the

others are trapped in open field. Collisions and
collisionless pitch angle scatterings at X-points,
however, make particles move nonadiabatically. Thus
particles with large p initially suffer from the pitch
angle scattering and consequently are lost away from the

confinement system. This is discussed below.

2.1 Kinetic equation
Peripheral plasma particles have loss region in
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velocity space determined by the mirror ratio. So the

velocity distribution becomes never isotropic
Maxwellian. Thus we employ the kinetic theory to
understand the particle transport in the edge region.

Almost all of plasma particles in the edge plasma

are off-axis gyrating particles. In the absence of
collisions and collisionless pitch angle scattering, the

velocity distribution function averaged in time (enough

long for gyration and enough short for axial bounce

motion) is found for the axisymmetric plasma to be

f (H, t, Pe, V, )()=f (H.l, W). (1)

where 11, J, Pe, V, and 7 denote the Hamiltonian, the

radial action integral, the canonical angular momentum,

the magnetic flux function, and the stream function,
respectively. The quantity r1r indicates the time averaged

flux function which is regarded as the guiding center.

After this, we simply describe it tp. The detailed
derivation of the above form is in [0]. Velocity
distribution/(H, J, V) in Eq. (1) is the general solution

to the zeroth order equation for perturbations. Explicit
form of/(I1,,f, V/) is obtained by considering first order

equation to collisions and collisionless pitch angle

scattering. Steady state velocity distribution is obtained

bv- 
/d/\ /d/\ /d/\lal=lal +l-. I Q)
\ dr / \ dr /".r \ dr /o""

where the first term on right-hand side designates the

collision term and the second one represents the term

concerned with adiabaticity breaking processes. Each

term will be described in the followins section.

2.1.1 Collision
We employ, for simplicity, linearized Landau form

for the collision term. According to Ref. [10], gyration

time averaged collision terms are given as
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where W and 0o denote the kinetic energy of particle
concerned and the pitch angle at the midplane, and

where q, e, M, m, T, ni, n", and ). are the ion and

electron charge, the ion and electron mass, the plasma

temperature, the ion and electron density, and Coulomb

logarithm, respectively. The pitch angle 0o is related

with the radial action integral ,/ in the form

- H-sQM\ )^J=---At cos'0,

where O denote the gyro-frequency at midplane, and

4(y) is the electrostatic potential at the midplane. Note

that Eqs. (3) and (4) describe how the velocity
distribution near the midplane is deformed due to
collisions. Though the pitch angle 0o varies in order to

keep the adiabatic invariance ,I in slowly varying
magnetic field, the values of 0o in Eqs. (3) and (4) are

mapped on the velocity space at the midplane and are

kept to be constant without collisions. Quantities .r and

4 are defined as

MW)f'
x = M:L, 4(x)=ft J, , "'exp ( -t)dt .

SubscriptsT and s indicate the particles concerned and

the background particles. The important point of Eqs.

(3) and (4) is the fact that collisional change in velocity
is transformed into the shift of the guiding center t1r by
the time average.

2.1.2 Adiabaticity breaking processes
Compared with an ion, an electron has a small

gyro-radius, and thus the electron is hard to suffer the

at\
awl
for ions (3)

610



Takahashi T . et al., Velocity Distribution in the Edge Region of a Steady State Field-Reversed Configuration

adiabaticity breaking processes. We assume now only
ions are subject to this effect of X-points. The term
concerned with adiabaticity breaking processes is given
with use of Boltzmann collision integral form:

f d/\
t.l
\ dl /nep

_ ['*, pr ( H, J, Vl J'-+ t';y1 H../, Vt),,,=r 

-u

Jo Acl(H,J', V)
P " ( H, J, rtll J'+ J )f( H,J" v) ",,Atg(H,J,, V)

Pr (H, J, ttt I J --> J' )f( H, J, V) ) r,
Atl@, J, ry)

l- 
t* P" ( H, J, tt, lJ + J")f(U, l, V),,,-J.ffi*' (5)

where P(Il, J, VV -+ ./) and Lr6(H, "/, r1r) indicate the
transition probability of the radial action integral and the
bounce time of reciprocating motion, respectively.
Superscripts o and f represent the bounce motion from a

mirror point to an X-point and the one from the
midplane to the X-point, respectively. The values,/.*
and ,/- are defined as follows:

2.2 Ambipolarity
Electrons are lost rapidly into the loss region

because ofthe higher collision frequency. Thus negative
electrostatic poteniial is created at the mirror point in a
case that the one is set to be zero at the midplane, in
order to equalize the loss rate of ions and electrons. If
there exists electrostatic potential, the boundaries of loss
region in velocity space become a hyperbolic curves.
Moreover, plasmas must satisfy the quasineutrality
condition. So, the ambipolar potential is obtained from
two conditions: I ) Plasma must satisfy the
quasineutrality. 2) Loss rates of ions and electrons are
equal.

Let us suppose that edge electrons are lost away
due to collisions, on the other hand, dominant ion loss
mechanism is the adiabaticity breaking processes. The
first ambipolar condition is

.I:"*

r,-

where O. denote the gyro-frequency at the mirror
points, and Q^(y) is the electrostatic potential at the
mirror points. The probabilities are normalized to obey

F,
l"ns

I Ptn.J,VrlJ'+J)dJ'=1.
Jo

f J..

I P (tt, J, ttr I J -+ J') dJ' = | (6)
Jo

Then last two terms on right-hand side in Eq. (5)
become

N'(V)=N "(V) .

Quantities N'(rg) and N"(ry) are defined by
Fe F I

N'(v)= | | f',(H,J,vt)DdHdJ .
JHo J J.
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P= (10)
2B'-1rtr\r J^i'

where R, r" and B* denote the mirror ratio, the separatrix
radius and the magnetic field on midplane, respectively.
The next condition is given:

r' (V) = r" (V). (1 1)

The ion loss rate f'(y) is calculated by

, H-s0v)
"md- a

, -H- 
qQ^(w)

u, - d) 
^

(e)

(r2)

Iul

- d(H, t, ry', f (H' J' v)
Lcl@, J, vr)

_ f(H, J, w)
Ltfl( H, J, tt4'

We define a(H, J, ty) as the trapping probability:
FT

a(H, J, ,)= J;. P (H, J, t{ | J + J') dJ' . (S)

In order to obtain the explicit Boltzmann collision
integral form in Eq. (5), the transition probability of the

adiabatic invariant should be given. Unfortunately, no

data on collisionless scattering is available except from
our previous work [8] where the transition probabilities
have not been calculated. We calculate them
numerically and present them in Sec. 3.

The electron loss rate is shown in Ref. [0]. To follow
the ambipolar condition, Q(fi and Q^(y) are controlled
to satisfy Eqs. (9) and (l l).

3. Preliminary Results and Discussions
At the beginning, we calculate the transition

probability numerically to evaluate Eq. (5). Using
particle tracing routine with monte-carlo method, we
calculate an example of transition probability in Fig. 1.

a)
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The particles start with the same "/ initially and are put

in different gyro-phases. Then those suffer the change in

J after passing through,X-points. We calculate the

histogram of the transition probability of the scattered 'I,
which corresponds to P(H, J, VIJ -->./'). Preliminary

calculation shows the small ./ given initially is converted

into the larger one due to adiabaticity breaking

processes, which implys that particles moving from the

midplane bounce axially near the X-points. Some steep

peaks are observed in Fig. l. According to the trace of
orbit and the calculation of Lyapunov's exponents, the

peaks result from the fact that neighboring particles in
initial gyro-phase gather round until they reach X-point.

In order to describe the particle transport due to
adiabaticity breaking processes, we have to obtain three

dimensional dependences of P(H, J, tttlJ +,/'), thus this

is the hard task and remains for the future study.

If we suppose collisions alone as the transport

mechanisms, we are able to obtain the velocity
distributions by solving Eqs. (3) and (4) under the given

boundary conditions. We assume/= 0 in the loss region

in velocity space, then the boundary conditions are

given as the the hyperbolic curves. The solutions to Eqs.

(3) and (4) are presented in Figs. 2 and3.I3!gu."t, r,o

denote the thermal velocity, i.e., a,1, ='l2Tlmi. Self-

consistent velocity distributions and ambipolar potential

that satisfy Eqs. (9) and (ll) will be presented in a

subsequent paper.

For FRC, velocity distributions in the edge region

become non-Maxwellian, which cause loss-cone

instability. We are interested in its effect on transport

and stability.

4. Summary
We derive the kinetic equation averaged over

gyration time for edge plasma particles in an FRC. This

equation includes the collision term and the effect of
adiabaticity breaking processes at X-points. The latter

term is described with use of transition probability of
the radial action integral, which is partially obtained

with numerical calculation. It appears that transition
probabilities form steep peaked shapes. Regarding

collisions alone as the transport mechanisms, velocity

distributions of ions and electrons are shown in this
paper. Self-consistent ambipolar potential is remained as

the subject for a future study.
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