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Abstract
Normal mode and their high-frequency instabilities are analyzed self-consistently considering

electron beams propagating along a magnetic field in unbounded and bounded systems. For unbounded
dielectric system, the beam couples with electromagnetic waves corresponding to X and O modes,
resulting in the slow cyclotron and Cherenkov instabilities, respectively. For cylindrically bounded
system, a self-consistent field theory is developed. Axisymmetric and nonaxisymmetric normal modes
obtained are hybrid modes. Cherenkov instability for the EH mode and slow cyclotron instability for EH
and HE modes are confirmed in a cylindrical slow wave structure system.
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1. Introduction
Plasma heating and production utilizing microwave

power will play a key role in steady state operation of
large-scale fusion devices such as large helical device.
For these purposes, high-power slow wave devices have
been studied extensively, because they can be driven by
an axially injected electron beam and are particularly
suited to operation with an intense electron beam. Most
previous studies on the slow wave devices have aimed
at the Cherenkov instability and are based on interaction
between the electromagnetic normal modes in vacuum
system and electron beam guided by an infinitely strong
magnetic field. Recently, slow cyclotron maser has been

demonstrated as a candidate for a useful slow wave
device. In order to analyze the slow wave devices
including slow cyclotron maser, a finite strength field
has to be considered self-consistently. In this paper, we
develop a self-consistent field theory and analyze
normal modes and their instabilities for systems with
magnetized electron plasma or electron beam.

2. Normal Modes and High Frequency
Instabilities in Unbounded System

We assumed that uniform cold beam neutralized by
a fixed ion background is propagating with a velocity os

along a constant magnetic field 86 in an unbounded
dielectric system with dielectric constant €,.

The self-consistent dispersion relation has been
derived and discussed by W.B. Case et al. [ll. h is sixth
degree in or and gives six normal frequencies. Two are

electromagnetic modes and remaining four are
electrostatic modes on the beam, those are fast space
charge mode (FSCM), slow space charge mode
(SSCM), fast cyclotron mode (FCM) and slow cyclotron
mode (SCM).

The dispersion relation derived in reference [1] can
be rewritten as the second order equation of k2s1,

aokorr+ arkl"r+ ao=o (l)
where, tr1 is wave number of the perpendicular
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direction to Bs. Then, there are two normal modes

having the following ks1,

k'"r=-lLlY uL-tuoun'.
zat zl aol

Q)

We designate these modes as O and X modes, which

corresponds respectively to O and X modes in the limit

ofos -+ 0 [3].
The dispersion curves given by eq. (1) are shown in

Fig. l. The SSCM couples with O mode and results in

Cherenkov instability. The SCM couples with X mode

and results in slow cyclotron instability. When the

guiding magnetic field is relatively weak, the slow

cyclotron instability merges into Cherenkov instability

t3l. At zero magnetic field, Cherenkov mode and slow

cyclotron mode are degenerated.

3. Derivation of Dispersion Relation in
Gylindrically Bounded System

We consider a cylindrical system shown in Fig. 2.

A finite strength magnetic field 86 is applied uniformly

in the axial direction. From the linerized relativistic
equation of electron motion under small signal

conditions, the perturbed current 
"/r = €tr1'us - €ns'u1 Q?n

be derived in the cylindrical system. Here, o1 and nr are

the perturbed electron velocity and density, respectively.

The volume charge density Pt = -€nr is related to the

perturbed current 
"I1 

by the continuity equation. Using

the Maxwell equations, Jr and pt can be expressed by

the axial components of the field, Eyand By,.

We assume the axial field components as Erz =
As2J^(fug) and Bp = AszJ^(kn),r). By Maxwell

equations with the source terms, we obtained the wave

equation,

1 The dispersion relation for unbounded
with electron beam.

system

Fig. 2 The parameters of cylindrically bounded system.

wherc, oJ = o) - kz'uo, af'2 = ol2 - (Ny)2 and

| " \2 / ,\2

^=lQ'-k'-9i 
rn'l -l';l (da\'

\ ., , y,, ,,r"1 -\Vfr) \ffi"i) (5)

Here, a and k. are angular frequency and wave number

in z-direction, respectively. And, cyclotron frequency O,

speed of light c, plasma frequency lJp, and relativistic

factor y are used.

From the condition that As2 and 4"2 are not zero

simultaneously, we obtain the same second order

equation of /c]1 as eq. (l). Hence, two possible normal

modes in the cylindrical system are cylindrical O and X
modes defined previously. The amplitudes of A62 and

As7 are correlated to each other. The normal modes in
magnetized elechon beam have all field components and

are hybrid modes. These modes are characterizedby A'st

or Ar"r. Here, the sign of the superscripts corresponding

Fig.
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to the sign of eq. (2).

The wave equation should be solved subject to the
given boundary condition. At the beam surface, r = Rt,
we obtain the following four independent equations,

Ei'- Ei,=0

BT'- B'i,=- FoKrc

E:'-E'i,=or|€o

E t'j - E'ir=g .

(6)

a)
(8)

(e)
Here, 01 = -€nsr1 is the surface charge density, r, is
radial displacement of beam surface, and qe is the
surface current density in the g direction, the
superscripts "out" and "in" mean outside and inside on
the beam surface, respectively. The electromagnetic
field out of the beam can be represented by ArB2or A!s7

using eqs. (6)-(9).

At the waveguide wall, two electric fields, one is
81, tangential to the wall in the r-z plane and the another
is Ele in the 0 direction, should be zero. In the periodic
system, the normal mode has spatial harmonic waves
with axial wave number ko = k, + pfts, where p is
harmonic number and /c6 = 2ttl7s.Then, the boundary
conditions can be written as.

S rlP
Et,=n L Er,(k,R,)+Et,(k,R_)+ (10)" p " ' P "' dz

Eft=nP 
"rr(koR.).

These conditions can be represented by A!s2 or A|2.
From the condition that A167 or Ars2 are not zero, we can
obtain dispersion relation for cylindrically bounded
system [2-4].

4. Normal Modes and High Frequency
lnstabilities in Bounded System

Figure 3(A) shows the dispersion relation of axi-
symmetric mode in straight cylindrical waveguide (/l =
0) with magnetized plasma (oo = 0), and Fig. 3(B) is the
non-axisymmetric one. Due to the effect of the plasma
density, the waveguide mode's frequencies are up-
shifted a little.

For a waveguide partially filled with an
unmagnetized dielectric, it is well known that normal
modes are TM and TE modes for axi-symmetric cases
and become hybrid for non-axisymmetric cases. The
hybrid modes are designated as EH and HE, in order to
imply the hybrid nature consisting of TM and TE
modes. Qualitatively, E is dominant in EH mode and.F1.

is dominant in HE mode. In Fig. 3, wave-guide and
plasma modes become hybrid modes even in the

Fig. 3 The dispersion relations with straight cylindrical
waveguide and zero beam velocity. The plasma
frequency ale, cyclotron frequency O and upper
hybrid frequencv coh are plotted by broken lines.
The dotted line ck, is light line. The parameters
are shown in Fig. 2.

Fig. 4 The dispersion relation of axisymmetric mode for
corrugated waveguide with electron beam energy
660 keV and 4 = 0.35 T. The other parameters are
the same as Fig. 2.

axisymmetric case. The hybrid cyclotron and plasma
modes are designated as HE" and EHp modes,
respectively.

For periodically corrugated waveguide, the
dispersion relation is periodic in t -space with period ka.

Figure 4 shows this dispersion relation with magnetized
beam in one period, k, = 0 to fte. Although there are
many beam modes corresponding to Trivelpiece Gould
modes, one of the SSCM coupled the EHsl and EHs2

modes, and the SCM couples with EH and HE modes.
The temporal growth rate due to SCM is much smaller
than that of SSCM.

Magnetic field dependence of the temporal growth
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Fig.5 Magnetic field dependence of temporal growth
rates. The parameters other than 8o are same as

fis. 4.

rates is plotted in Fig. 5. The growth rate of slow

cyclotron instability for EH61 mode, Fig. 5(A)' has the

maximum value 0.1 nsec-l at nearly 0.15 T and that for

HEsl mode, Fig. 5(B), has the maximum value 0.04

nsec-r at nearly 0.2 T. These growth rates go to zeto at

Bo = 0. The growth rate of Cherenkov instability for

EtI61 mode, Fig. 5(C), is nearly constant far from Bo = 0,

and increases to 0.64 nsec-l with decreasing the guiding

magnetic field to zero.

5. Gonclusion
Normal modes and their high frequency instabilities

for systems with magnetized electron beam are analyzed

self-consistently. In unbounded dielectric system,

normal electromagnetic modes are O and X modes,

which couple to SSCM and SCM, resulting in

Cherenkov and slow cyclotron instabilities, respectively'

In cylindrically bounded system, the normal modes are

hybrid, EH and HE, modes. Cherenkov instability for

the EH mode and slow cyclotron instability for EH and

HE mode are confirmed. The temporal growth rates of

the slow cyclotron instability depend on guiding

magnetic field and have the maximum value at non-zero

magnetic field. Decreasing the,magnetic field to zero'

the growth rate goes to zero. The temporal growth rate

of the Cherenkov instability becomes maximum at Bs =

0, and approaches constant value far from Bo = Q.
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