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Abstract
The stabilizing effects of the viscosity and heat conductivity on the interchange modes are studied

numerically in a heliotron configuration. The viscosity cannot stabilize the mode completely although it
reduces the growth rate substantially, while the heat conductivity can stabilize the mode completely. As

substantial stabilizing effects are found in the range of the anomalous transport, they may explain the

stable plasma observed in the Mercier unstable region in the CHS experiments.
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1. lntroduction
For the steady state operation of the magnetically

confined plasma, the MHD (magnetohydrodynamic)

stability is necessary. In the Heliotron plasmas, the

interchange mode is usually crucial because the

confinement field is generated by the outer helical coils

and there exist MHD equilibria without net toroidal
current which is necessary in tokamaks. In some

experiments of the CHS [], the stable plasmas were

observed at beta values above the Mercier limit [2].
These results indicate that there should be some

stabilizing mechanism for the ideal and resistive

interchange modes.

In the linear stability theory for the electrostatic

model, it was analytically shown that the dissipation
such as viscosity and heat conductivity have a

stabilizing contribution against the interchange mode in
Heliotron plasmas [3-5]. However, such stabilizing
contribution in the electromagnetic model was not
studied systematically. Thus, we consider the stabilizing

effect of the viscosity and perpendicular heat
conductivity against the global ideal and resistive MHD
interchange mode. Particularly, in order to know

whether such dissipation should be a candidate of the

stabilizing mechanism in the CHS and the LHD
experiments, we focus on how much dissipation is
needed to stabilize the modes.

2. Numerical Procedure
In order to study effects of the dissipation on the

linear stability, the RESORM code [6] is utilized with
adding the diffusion terms.

The RESORM code solves the reduced MHD
equations based on the modified stellarator expansion

method [7] for the poloidal magnetic flux Y, the stream

function (D and the plasma pressure P, which are given

by

# = - (ff-)'" Vo+ nvlr '
(1)

p-dvja =-B'vvlYdt
*,( VctxVp.Y(+vY!a, Q)

and

ff= rcv1r. (3)
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Here R and ( denote the major radius and the toroidal
angle, respectively, and the subscript 0 means the value
at the magnetic axis. The averaged magnetic curvarure,
Q, is given by

I r -rz\o=1* [" o(f+)'l'*l';11-l-'. (4)2cro -\&/\ u3 l
where B denotes the axisymmetric part of the magnetic
field. The magnetic differential operator and the convec-
tive time derivative are defined as

=f=-(**'g)wv--lu= L?!!' -urr aY)-\apP a0 ap Pad)

**,(*+#-#i#),
T=-r?i#.ry21p,

(8)

(e)

where S, Bs, e and rdenote the magnetic Reynolds num-
ber, the beta value at the magnetic axis, the inverse as-
pect ratio, and the rotational transform. The subscript of
'eq' denotes equilibrium quantities. The other part is the
diffusion equation with the viscosity given by

P=vV?o.
dt

B.V= 
"3*r-VYxV(.V

and

(5)

+=++a,.v, . ur=fg)'vo"v6, (6)dt dt '\&l "'
respectively, and V, =Y -Y((dl)(). 4 denotes the re-
sistivity which is set to 0 for the ideal modes. The per-
pendicular diffusion type terms are added to the vortic-
ity equation and the equation of state to investigate the
viscosity (v) and the heat conductivity (r) effect.

The RESORM code finds the linear mode with the
largest growth rate by following the time evolution of a

perturbation. The full implicit method is employed for
the time evolution. As for the spatial descritization, the
central difference method is employed in the radial
direction and the Fourier series are used in the poloidal
and toroidal direction in the straight field-line
coordinates (p,0, (), where p means the square root of
the normalized poloidal flux. Since the toroidally
averaged equilibrium quantities evaluated from the

three-dimensional VMEC results [8], the toroidal mode
number is specified and the poloidal mode coupling is
taken into account. Therefore, the inversion of the

block-tridiagonal matrix is carried out at each time step

in the case without any dissipation terms.

If this scheme would be employed for the present

problem, we would have to treat the inversion of the

block-pentadiagonal matrix which needs much more
computational region because the viscosity term
involves the forth-order derivative in the radial
direction. In order to avoid this situation, we modified
the scheme by employing the Okamoto and Amano's
(OA) method [9], which is second order accurate in the

time step At. This method requires dividing the
linearized three-field equations into following two parts.

One part is the equations without the viscosity term
given by

(10)

The length and the time are normalized with the minor
radius of the plasma and the poloidal Alfv6n time. Ac-
cording to the OA scheme, the results at t = to + Lt can
be obtained from the initial values at t = to with the fol-
lowing three steps. At first, we let the solution of (10)
after llzA,t with the initial condition 0(16) be (D1 and let
Yr = Y(to) and P' = P(rs). Second, we let the solution of
(7)-(9) after Ar with the initial condition y,, (Dr and p1

be Y2, @2 and P2,respectively. At last, we obtain O(t +
At), Y(t + Ar) and P(t + Lt) by setting the solution of
(10) after ll2 Lt with the initial condition <D2 as O(r +
A/) and setting Y(t + At) = Y2 and P(r + Ar) -'P2. In this
scheme, each step can be carried out with the inversion
of a block-tridiagonal matrix only.

3. Stabilizing Effects on lnterchange Mode
In order to investigate the effects of the dissipation

on the stability against the interchange mode for the
Heliotron plasmas, we choose the currentless LHD
(Large Helical Device) [0] equilibrium with the
pressure profile of P = Po(l - s2)2, where s and P6 are
the normalized toroidal flux and the pressure at the
magnetic axis, respectively. This equilibrium is Mercier
unstable for pr 2 l.5Vo and the resistive interchange
mode can be unstable even at beta values below the
Mercier limit because of the magnetic hill. Thus, we
studied the effects on the n = 2 ideal mode found at ft =
5Vo and, the n = 2 resistive mode for S = 106 found at Bs

= l%o.ln the case without any dissipation, the growth
rate normalized by the Alfven time of the ideal mode is
3.525 x l0-2 of which the dominant component the
mode is m = 3, and the growth rate of the resistive mode
is9.224 x l0-3 of which the dominant components are rn

= 3 and m = 4. The mode structure of the stream#=-(*.-#)o+1vlv a)
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function <D of the resistive mode is plotted in Fig. I'
which shows a typical interchange mode structure. The

structure of the pressure P of the mode is quite similar

to that of O.

Figure 2 shows the dependence of the growth rate

on the viscosity without the heat conductivity.
Significant reduction of the growth rates is seen both for

the ideal and the resistive modes. Particularly, the

reduction is remarkable around v - lO-s which

4.1E+17

- I \

-3.08+17

RHO

Fig. 1 Stream function of the n = 2 resistive interchange
mode without any dissipation. The peaked
profiles at p = 0.43 and 0.63 show the components
of m = 4 and m =3, respectively.

0.0

0.

0.0

log v

Fig. 2 Dependence of the growth rates on the viscosity
for the resistive and the ideal interchange modes.

corresponds to I m2ls in the real dimension. This value

is in the range of the anomalous transport observed in

experiments in the heliotrons. However, either resistive

or ideal mode cannot be stabilized completely by the

viscosity only. Figure 3 shows the mode structure of the

stream function of the resistive interchange mode for v

= I and K= 0. Comparing it with Fig. l, the modes m =
3 and m = 4 are broader than those in the case without

any dissipation. This is due to the diffusive effect of the

viscosity term in the vorticity equation. The structure of
the pressure is very similar to that without any

dissipation.
Figure 4 shows the dependence of the growth rate

on the heat conductivity without the viscosity. In this

case. both the resistive and ideal modes can be

completely stabilized by only the heat conductivity' It is
noticed that substantial stabilizing effect is seen for the

both modes in the range of the anomalous transport (K-
l0-5) also in the case ofthe heat conductivity. There is a

difficulty in obtaining the linear growth rate ofthe ideal

mode near the stability limit with respect to r because

of bad numerical convergence. Figure 5 shows the

structure of the perturbed pressure of the resistive

interchange mode for v = 0 and r= l0-4. In this case,

the diffusive effect of the heat conductivity term

broadens the components of the pressure. The profile of

the stream function is almost the same as that without

any dissipations.

When we put both effects of the viscosity and the

heat conductivity, both ideal and resistive interchange

2.08+16

.3.5E+16
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P

0.5
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Fig, 3 Stream function of the n = 2 resistive interchange
mode with v = 1 and r = 0. Numbers show the
poloidal mode numbers of the components.
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P

log rc

Fig.4 Dependence of the growth rates on the heat
conductivity for the resistive and the ideal
interchange modes.

u.c

RHO

Fig. 5 Pressure of the n = 2 resistive interchange mode
with v= 0 and K= 10'.

modes are stabilized more effectively than in the case

with one of the effects only. It was obtained, for
example, that both ideal and resistive modes are

completely stabilized at v = lD-a when the viscosity is
varied with the heat conductivitv fixed at r= l0-5.

4. Gonclusions
In the present study, stabilizing effect of the

viscosity and the heat conductivity in the perpendicular

direction on both the ideal and the resistive interchange

modes in an LHD equilibrium is investigated by
utilizing the reduced MHD equations. Substantial
stabilizing effects of them in the range of the anomalous
transport observed in experiments are found for both
ideal and resistive modes. The viscosity cannot stabilize
the modes completely although it reduces the growth
rate significantly, while sufficient heat conductivity
stabilizes the modes completely. When both effects are

considered, the stabilizing contributions are almost
superposed. Because of the diffusive model of the
dissipation, the viscosity and the heat conductivity
broaden the mode structures of the stream function and
the pressure, respectively.

In the experiments in the CHS device, the plasmas

are observed beyond the Mercier limit. The stabilizing
effects of the dissipation in this study may be one of the
candidate to explain such experimental results because
the stabilizing range ofthe dissipation is realistic.

In the present study, we only keep the
perpendicular component of the heat conductivity. The
effect of the parallel heat conductivity and the model
based on the neoclassical closure will be considered in
the future study. Furthermore, the reason for the
difficulty of the numerical convergence near the stability
limit in the scan of the heat conductivity for the ideal
mode will be worth examining analytically.
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