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Abstract
In this work it is shown that robust burn control in long pulse operations of thermonuclear reactors

can be succesfully achieved with artificial neural networks. The results reported here correspond to a

volume averaged zero-dimensional nonlinear model of a subignited fusion device using the design
parameters of the tokamak EDA-ITER group. A Radial Basis Neural Network (RBNN) was trained to
provide feedback stabilization at a fixed operating point independently of any particular scaling law that
the reactor confinement time may follow. A numerically simulated transient is used to illustrate the

stabilization capabilities of the resulting RBNN when the reactor follows an ELMy scaling law comrpted
with Gaussian noise.
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1. lntroduction
It is now widely recognized by the fusion

community that particle and energy transport in
magnetically confined devices are determined mainly by

turbulent processes. However, theoretical and numerical
predictions of transport properties are a formidable task

involving highly nonlinear phenomena and thus in spite

of major advances achieved in this field, significant
discrepancies with experimental results still exist.
Current design studies are then generally performed

using transport losses modelled through a global energy

confinement time, extrapolated using a comprehensive

data base gathered from previous and current tokamak

experiments. Hence, the resulting ITER scaling laws for
the L- and H-mode cases whether under ELMy or ELM-
free operating conditions, suffer from significant
uncertainties [1]. Thus, it is important for the long pulse

operation of the next generation machines to have
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reliable means for plasma burn stabilization which are

independent of any particular scaling law, as well as

robust with respect to noise or to stochastic fluctuations

inherent to measurements and turbulent processes

underlying transport phenomena.

The purpose of this work is to show that robust

burn control in long pulse operations of thermonuclear

reactors can be succesfully achieved with artificial
neural networks. Although there are well established

control design techniques for linear dynamical systems,

being the most populars the PID controllers, their
applications to nonlinear dynamical systems require a

linearization procedure which may restrain their
applicability range. On the other hand with the use of
nonlinear controllers such as artificial neural networks.
it is expected to extend the range of applicability, while
at the same time taking into account design restrictions
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such as the maximum and the minimum levels that

actual control actions can take [2].
In a previous work [3] we reported the

development of a standard feedforward artificial neural

network with sigmoidal activation functions, for the

stabilization at ignited burn conditions of a

thermonuclear reactor with the CDA ITER scaling law

and design parameters. In this work we present results

concerning the stabilization at subignited burn

conditions of a thermonuclear reactor, with the

parameters of the tokamak EDA ITER [4], which is
independent of any particular scaling law. Hence, we

can not determine the thermal stability at the operating

point since this depends on the specific scaling law of
the device. To ensure the stability of the reactor

regardless of the scaling of the energy confinement time,

we train a Radial Basis Neural Network (RBNN) t5l
with Gaussian nodes in the hidden layer and sigmoidal

units in the output, to provide feedback stablization at a

fixed operating point by considering the energy

confinement time as part of the input parameters to the

network.

In order to have the same operating point for the

family of subignited devices with different scaling laws

considered here, it is required that the control actions

include the injection of a neutral He-4 beam in addition

to the D-T refueling rate and the auxiliary heating
power. This is due to the fact that these variables need

to be adjusted properly for steady state at the operating
point for different values of the energy confinement
time.

2. Tokamak Model
The tokamak reactor model used here is a zero-

dimensional volume averaged plasma system composed

by D-T in equal proportions with density n21, helium
ions no, low density high-Z impurities n1, and electrons

n"; where the quasineutrality condition ne = nDr + Znd +
21 n1 is satisfied. All particles in the system are taken to

be at the same temperature, and the alpha particles
produced by the fusion reactions are assumed to be

instantaneously thermalized. Bremsstrahlung is the only
radiation loss mechanism considered and transport
losses are taken into account through the energy

confinement time ts, as well as by the D-T and the
alpha particle confinement times, ?o and to respectively.

In addition, similarly to other studies [6], the model

assumes that the density n1 and the charge 21 of the
high-Z impurities remain constant at all times.

The thermonuclear reactor model considered here.

is described by the following equations,

* no,= r, _ r(T), .o,, _'{,,

AT
i@"+ nDr+ na+ nt)t:

(l)

*,"=s".r(+)' .o,,-\, e)

*11r""+ nDr+ no+ n,)'f='"**,i'

. n"(T)' <6u > - A, z*n'"r"' -

(3)

where Qo= 3.5 MeV is the energy carried by the fusion

alpha particles, <oo> is the D-T reactivity [7], Aa is the

coefficient of the bremsstrahlung radiation losses and

4j2 is the ohmic heating density by the plasma toroidal

current [8]. In particular in this work we will assume ?o

= 3te and To = 5.5Tr. The control actions are

represented by, Sythe refueling rate, ,So the neutral He-4

injection rate, and Po the injection rate of the auxiliary

heating power density.

Using the quasineutrality condition, these equations

can be transformed into a set of coupled nonlinear
differential equations for the electron density n", the

relative fraction of helium ash;f, = noln", and the
plasma temperature ?. The nominal operating point, was

determined from the ignited steady state condition, i.e.

Po,, = 0 and So = 0, corresponding to the EDA ITER

design parameters and its associated ELM-free energy

confinement scaling law [9], i.e.

h = 0.03 II o es 
Rt 

e2 
B02s Mo 

a2 
60.08 x'0.63 no"'3t Y-),u' ; (4)

where n" is the electron density and Pn", represent the

total net plasma heating including auxiliary heating.

The volume averaged values of the operating point

are no= 1.0 x 1020 m-3 for the electron density, To= t2
keV for the plasma temperature and fos = 0.09 for the

ash fraction, with a DT refueling rate of Sm = 3.58 x
1018 m-3sec-I. Eq. 4 yields an energy confinement time
Tr = 7.63 sec for an ignited device. In the above

calculations it was assumed that 96Vo of the alpha
particles energy produced by the fusion reactions is
deposited within the system; and the high-Z impurity
density is n1 - 7.0 1 1gl? --3 with a charge Zr = 14.7.

The above values of the plasma temperature, the

electron density and the fraction of helium ash constitute

the operating point for the sub-ignited tokamak reactors
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we are concerned with in this work.
Althougir the,auxiliary heating power and the

neutral He-4 beam injection are zero for an ignited
device i.e. with r" = 7.63 sec as pointed out above, they
must be different from zero if the same operating point
{no,foo, Z6} is desired for subignited devices, i.e with
smaller zs, regardless of the scaling law.

3. Training and Simulation Results
The network was trained using dynamic

backpropagation [10] with a parallel training code
developed using MPI a portable message passing
enviroment [11], and modified to work with radial basis
neural networks. The multiprocessor platform used was
the SGVCRAY Origin 2000 at UNAM. The RBNN was
trained to stabilize the system, suppressing perturbations
around the nominal operating point for a range of
energy confinement times rE, that was chosen here to lie
between 5.0 sec and 6.5 sec; this time range corresponds
to subignited devices since they are below the value of
7.63 sec required for ignition. The closed loop RBNN-
dynamical system configuration is illustrated in Fig. l,
where the output of the neural network / is associated
with the control variables and are constrained to take
values within the following range 0 < S/ < 4 t *o
m-3sec-r,0(So( 0.lxfosnsm-3sec-r and 0 < pou,10.2

x 1.5 nsTs keV m-3sec-1, or in terms of the total auxiliary
heating power 0 3P,o,ot < l15 MW. In addition to the
energy confinement time 16, the input to the network is
composed by the current values of the electron density,
the fraction of helium ash and the plasma temperature.
The training of the RBNN was performed with
numerically simulated transients using a fourth order
Adams-Bashforth integrating scheme, with initial
perturbations in the state variables within 107o below
andSVo above their nominal values and different values

of the confinement time for each transient. As a training
strategy the values of ?6 were kept constant for the

Fig. 1 Closed loop RBNN-dynamical system con-
figuration.

entire duration of the individual transients.
We present an illustrative example of the results

obtained after the neural network training for the case in
which the energy confinement time of the device
follows now a particular behaviour; with this purpose
we use the following ELMy scaling law [9],

Ta^y=0.02910 e0R203 
Bo'2o Mo2 €o.ts Ko.ot no.4o pJ;*; (5)

where n" andP,",, the electron density and the total net
plasma heating into the system respectively, will be
considered the only varying parameters in this
expression.

A typical transient behaviour obtained using the
resulting RBNN with the initial state n" = 0.90 \ ns,f,=
0.90 x/r, and I = 1.10 x To, will be shown here. The
energy confinement time used in the dynamical
equations was obtained from T"6" in Eq. (5); however,
in order to simulate measurements errors or a noisy
enviroment, the value of r" fed into the network was
determined through a Gaussian stochastic process with
mean value given by the instantaneous value of t"6, and
standard deviation 0.04 x t"1^r. Figure 2 shows the
energy confinement time corrupted with noise which
was fed into the network as function of time; and Figs. 3
and 4 show, respectively, the resulting time behaviour of
the control vdriables Sr, So, and Pou,, and the state
variables n", fo and I, for this particular transient. In
these figures the state and control variables are shown
normalized to their nominal operating values and to
their upper allowable limits, respectively. It is observed
that in spite of the noise present in c6 and therefore of
the noisy action of the control variables, the network
was able to succefully suppress these perturbations

I(l)
96

q)
+a

o24681012
Time (eec)

Fig. 2 Behaviour of the ELMy energy confinement time
corrupted with Gaussian noise as function of
time.
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Fig. 3 Time behaviour of the normalized control
variables produced by the RBNN, normalized to
their maximum allowable values.
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Fig. 4 Behavior of the normalized electron density,
helium ash fraction and plasma temperature as
function of time.

returning the system to a small neighborhood around the

nominal operating point, within 6 seconds into the

transient.

As it can be noted, the initial values used for the

above transient lie outside the range used for training

the network, which shows the generalization capabilities

of the RBNN. Other simulated transients present a

similar behaviour as long as the energy confinement

time and the state variables do not get too far off the

range of values used in the training session.

4. Gonclusions
It is shown in this work that robust burn control in

long pulse operations of thermonuclear reactors can be

achieved with radial basis neural networks. In addition

to the electron density, the fraction of helium ash and

the plasma temperature, the input to the network also

contains the instantaneous value of the energy

confinement time. The control variables consist in the

concurrent modulation of the DT refueling rate, the

inj'ection of a neutral He-4 beam and an auxiliary

heating power. As a result of the training strategy for the

network which consisted in keeping constant the value

of the energy confinement time for the entire duration of

each of the simulated transients, the resulting RBNN can

succesfully stabilize the system regardless of any

particular scaling law. A numerically simulated transient

is used to show the capabilities of the resulting network,

when the reactor follows an ELMy scaling law

corrupted with Gaussian noise.

A complete research report is being prepared which

includes details regarding the RBNN training and

robustness tests with respect to the alpha particles

thermalization time. Research activities are under way to

allow also for the possibility that the D-T and alpha

particles confinement times vary independently of c6'
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