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Abstract
In this context, the time-domain equilibrium of plasma in Damavand tokamak subject to high

elongation (rK - 3.5) and high aspect ratio (A - 5) is studied. A self-consistent simulation of plasma

evolution is obtained by mixed numerical solution of equilibrium and transport equations, in two-
dimensions and one-dimension, respectively. At each time step, first the equilibrium equation is solved

by variational axisymmetric finite element method under a prescribed plasma scenario, then flux surface

averaged transport functions of mass, energy, and magnetic field are calculated. Here, an exact
variational approach to the finite element method using first order elements has been proposed. The
formulation permits simultaneous solution of plasma and vacuum regions without consideration of an

isolation boundary. Ionization of Deuterium plasma is also included in the model to study the breakdown
and pre-breakdown stages.
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with similar codes, so that it was become clear that the

neoclassical theory of transport could not provide a

proper understanding of the anomalous plasma transport
mechanism.

It took some l0 years of more research and efforts

to explain reasons for these discrepancies. Although
many related the misunderstanding to the neglect of
turbulence, plasma edge interactions and impurity
transport mechanisms, no successful unified theoretical
formulation was put forward. As a result, extensive
particle codes relying on massively parallel computing

were started to develop. However, neoclassical transport

codes remained as a valuable tool for design stage and

study of tokamaks.

Self-consistent solution of plasma transport in
axisymmetric toroidal plasmas was considered in [6]
with an extensive two-dimensional transport model
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1. Introduction
During past decades the problem of self-consistent

plasma transport in tokamak plasmas has been

considered through many works. Theoretical
investigations were led by a pioneering work of the so-

called neoclassical theory of transport in []. In [2] a

detailed review of neoclassical transport theory has been

presented and a complex system of transport equations

for plasma density and temperature of species have been

derived. An equivalent MKS representation of this set of
equations is given in [3]. Another early review [4] has

considered the methods of numercially self-consistent

solving the transport and equilibrium equations. In [5]
numerical solution of these equations was reported. It
was found there that the solutions of .neoclassical
transport equations are subject to large errors, up to two

orders of magnitude in estimations of the energy
confinement time tE. This problem had been associated
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described in [7]. This formulation exploited two
diffusion time scales at each time step. In a more recent

study [8] a 1rl2 dimensional code named DINA has been

developed. It uses two-dimensional equilibrium and one-

dimensional flux-surface-averaged transport equations to

represent the tokamak plasma and is able to track the

plasma evolution in time. To improve the simulation
results, the authors have modified the electron heat

conduction coefficient in each time step, so that the

consequent temperature profile is according to one of
the existing scaling rules for energy confinement time.

In [9] the much complex code ASTRA has been

presented with the possibility for presetting transport

equations and coefficients. It has been concluded that

the ASTRA system had provided an adequate

representation of the discharges for present experimental

conditions. Using ASTRA code authors of [0]
demonstrated the possibility of self-consistent
simulation of L and H modes with a single model, using

modified transport coefficients in accordance to a

previously reported anomalous reported estimates [1].
However, equilibrium analysis in ASTRA relies on pre-

assumption of geometric configuration of magnetic

surfaces.

It should be pointed out that there also exist newer

plasma transport models such as [2] which demonstrate

a high degree of complexity. Numerical solution of
these systems are generally too difficult.

Here we report a self-consistent solution of flux-
surface-averaged transport equations and equilibrium for
Damavand tokamak. Damvand is a small tokamak with
a highly elongated plasma (rK - 3.5) and high aspect

ratio (A - 5). We use the axisymmetric finite element

method (FEM) tl3l with first-order triangular elements

to solve equilibrium, in its variational approach. Our
code solves the equilibrium with no special limitation on

the geometry of magnetic surfaces within the plasma.

Plasma and vacuum regions are treated as a single
ensemble. The ionization and recombination of
Deuterium is involved to study the breakdown and pre-

breakdown evolution in a single model.

2. Theoretical Model
In our code, the basic set oftransport equations that

have been presented in [3] is employed with
modifications in ion and electron heat fluxes according

to I l]. The effects of ionization and recombination are

included in the source terms to provide the main
mechanism in breakdown and pre-breakdown stages.

This also enhances the possibility for studying plasma

edge interactions.

The heat flux in transport equations are given as

[11]:

Qr = )(r n,Y T, +2.5 Tt rt (1)

where / = e, i stands for electrons or ions, n and T are

the density and the temperature of species, and f is the

convective flux caused by particle transport defined as:

fr = DrY nr +Vnt a)
The anomalous values for the electron transport
coefficients X" and D, in metric units are defined as:

/z\os/ \r.7s

x" = 1.25 " ro" l* I {* I (n"qR) ' (3)
\Arl \f(i

D" =o.5)("
while for 7i and D; the neoclassical values are used.

Here, the electron temperature T, is given in energy

units. This system of transport equations has

demonstrated good agreement with experiments in many

small and large tokamaks.

The ionization and recombination processes in
plasma are taken into account by adapting proper source

terms in the continuity equations of plasma species as

follows:

Sr = Q; veneni-6or"fl"fri=(o,-6")v"nl (4)

where v" is the electron thermal speed, o; and 6o are

ionization and recombination cross-sections, being local

functions of temperature. An extensive data with
approximate interpolating functions for the major atomic
processes in hydrogen plasmas is already reported [14].

For equilibrium, the variational form of Grad-

Shafranov's equation is used, to be solved by the

axisymmetric variational FEM described in the next

section:

(s)

where r and z are radial and axial components of
cylindrical coordinates, Yis the poloidal flux and./, is
toroidal current density, including the poloidal magnetic

system of tokamak.
The toroidal current density "/, in (5) is obtainable

from the relation:

I (Y ) = t t \+[{#)'. 
(#)'l - 2" tlo t,v} aa'

r,=*(-*.h:+)+ r,t."
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where ,I,lr" is the toriodal current density maintained by
the poloidal system. The plasma pressure p and the flux
function I = rBt are found from transport equations at

each time step. Since plasma density and thus plasma

toroidal current in the low density or vacuum region are

nearly zero, the validity of (6) is attained.

3. Numerical Method
The scheme of solving equilibrium and transport

equation is as follows: with the initial values for
poloidal system currents, plasma density n, electron

temperature 7", and ion temperature Zr given, the

toriodal current density ,/, is calculated. Then the
poloidal flux Y is found through minimization of (5).

Then the circuit equations are solved to find the parallel

inductive electric field in plasma and poloidal field
coils. Finally transport equations are integrated in time
domain to find next values of n,7", and Ti.

Minimization of the functional in (5) is realized by

using the finite element method (FEM). The classes of
FEMs fall into two categories: Ritz-Galerkin methods,

and variational methods. Despite the existing literature

[l5] on Ritz-Galerkin FEM, due to its attractive features

we formulate exactly and employ a variational approach

with first order axisymmetric triangular elements.

Besides its simplicity, this approach permits accurate

minimization of (5), so that in the limit of small
elements the solution would converge to the exact one

[3]. As discussed below, variational methods lead to a
symmetric coefficient matrix which reduces the

necessary storage and improves the efficiency. Also,
variational methods are superior in terms of error
distribution, since as a special case of moment method,

variational FEM may be shown to be equivalent to least

square minimization of error [6].
First order triangular elements are defined using the

standard interpolation shape functions:

=[l r zlD A)

where 1 and zr are coordinates of element vertices, or
nodes, and i,j, and ft represent indices of each of nodes

belonging to an element, numbered in a clockwise
manner. The linear approximation to any functionf(r,z)
on the element e is done as:

where f1 are the values of the function / on the nodes.

These values for each function are to be determined on a
grid of nodes, which constitute a network of triangular
meshes. This way of discretization of functions produces

a continuous piecewise linear approximation. On each

element e, the gradientoff"(r,z) is thus expressed as:

vf " =v N{ f" =[3,,ru;f *o r"

I o,, Dii D,r
=l A, Doi D* f" (9)

which is a constant vector.

Discretizing (5) to element integrals results in:

ds" (10)

where the summation is performed on all elements

represented by the index e and the gradient is expressed

in Cartesian coordinates (r,e). Inserting (8) for the
toroidal current density ./, and the poloidal flux Y, and

taking partial derivatives with respect to nodal values Y;

we get finally:

-%=> | 1 v,tr v Na Y" -2tctro N{ N" Ji ds"dY 7J r
:o (11)

which transforms into the set of linear equations:

(8)

r (Y ) =D I _ +lv v l' - 21t rh r,Y

p I + ds"v N"v 
'r"'] 

v

-lI
I I ri Zi

Nt=[l r zll I rj Zj
I

| 1 rt Zr,
t

=[N, \ Nr]

(r2)

where Y is the array of unknown nodal values. The

element integrals in the left hand side are simple and

straightforward to evaluate, however the integrands of
right hand side are higher order functions of coordinates

and required special integration scheme. It is possible to

expand them on elements and directly evaluate them,

however, this process is time consuming and very

difficult to implement. A simple mathematical formula
for evaluation of this integral is given in [7] and a
general approach for evaluation of element intergals in
axisymmetric variational FEM is found in [8].

Finally, the coefficients matrix in the left hand side

=lr, ^l [ *u *" ar" fi
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of (12) is singular unless a zero reference point for the

poloidal flux Y is assigned. This may be simply such

chosen to coincide with the plasma magnetic center.

Also, the above minimization of (5) leads to erroneous

results due to a boundary integral resulting in the

standard variational approach. This may be expressed

0.6

0.5

^o.4g
'9 o.s(!

I
N

o.2

0.6

0.5

^0.4€
* o.s
o
ri

o.2

il, (#or; adz=f !{vv,aD, (13)

where dYis the first-order variation in the poloidal flux,

and the closed integral is in the counter-clock-wise
sense. The above must vanish identically for obtaining

correct results.

In order for (13) to vanish, it is necessary that
either Yis kept fixed on the boundary, or its gradient is

parallel to the boundary. The former is not physically

realizable due to non-constant poloidal fluxes, while the

latter imposes the flux lines to be normal to boundary. A
convenient solution is to extend the solution region to
infinity where both Y and Y Y tend to zero. This is
made possible by adding the so-called infinite elements

[3] to the solution boundary as is justified in the next

section.

4. Results
Different scenarios of elongated plasma equilibrium

in Damavand are considered in [19]. In Fig. I the cross-

section of elongated Damavand plasma is shown
together with the poloidal field coils, the ohmical
heating solenoid, the vaccum chamber and a toroidal
field pancake. Here, the plasma current is about 40 KA,
the elongation is about 3, and the triangularity is 0.2.

The Damavand tokamak is symmetric with respect to its

meditorial plane, and therefore only the upper half is
involved in calculations. As it may be observed form the

figure, the flux lines extend into the free space across

the right and upper edges, by applying the infinite
elements on boundaries. On the lower edge the
symmetry condition is applied which result in normal

flux lines to boundaries. On the z-axis, however, the

Dirichlet's zero boundary condition is needed to be

applied. It is noticed that without infinite elements, the

coefficients matrix in the left hand side of (12) would be

degenerate and the resulting solution is subject to
severely large errors. This situation is illustrated in Fig.
2 where the infinite elements are not used on the
boundaries:

The computation time for the developed code in
MATLABTM version 5.3 runnine on a 333 MHz

0

Fig. 1
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Cross-section of Damavand plasma (infinite
elements applied).
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Fig.2 Computed magnetic flux lines (without infinite
elements).

Pentium platform is about 80 sec for each time-step
iteration. when the total number of nodes and meshes

are about 3000 and ll,200, respectively.

5. Conclusions
A self-consistent simulation of plasma equilibrium

and transport in tokamak was presented. The transport

model exploited the magnetic-surface-averaged one-
dimensional neoclassical theory, modified according to
some more recent reported values for anomalous
transport coefficient values which are based on

empirical data. The numerical method solves the Gra&
Shafranov equation for axisymmetric equilibrium in a

0.1

0.1
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free boundary configuration in which plasma and

vaccum and poloidal coils are treated at once. The
axisymmetric finite element method has been
successfully adapted to the plasma equilibrium in
variational form. Addition of infinite elements around
the plasma boundary has prevented large errors in the

solution of magnetic poloidal field flux, thus
maintaining the stability of solution.
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