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Abstract
We investigate 3D plasma flow in the vicinities of critical points of magnetic configurations. The

study is based on the analysis of exact self-similar solution of the MHD equations and 3D computer
simulations. Both the analytical solution and 3D MHD simulations demonstrate appearance of singular
distribution of the electric current density near the magnetic field separatrix surfaces of the form of the
cuffent and vortex sheets.
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The studies of the magnetic reconnection are
relevant to a broad range of problems of space and
fusion plasmas (see [,2] and the references in). In the
limit when the nonlinearity effects dominate over
dissipation, self-similar solutions for the MHD equations

can be used in order to describe the self-consistent
evolution of the plasma flow and of the magnetic field.
The process when in the plasmas it takes a finite time to
form the singularity in the electric current distribution
near critical points is called the magnetic collapse. The

magnetic collapse corresponds to the self-pinching of
the electric current carrying plasma in inhomogeneous
external magnetic field when the gradient of the external

magnetic field is larger or of order of that of the
magnetic field associated with the plasma electric
current. In order to investigate non-self-similar plasma

motions, we use 3D MHD computer simulations.
In the vicinity of .r = 0, the magnetic field is equal

to B(r, t) = B(O,l) + (x.V)A(r, t) + .... We introduce the

notation bi = Bi(0, r) for the uniform component of the
magnetic field, and A;1 = dB/dxj,,=e for the matrix of
the magnetic field gradients. If the uniform part vanishes

bi = 0, a null point of the magnetic field occurs at r, = 0,

where B; = Aij xj. Further we assume that A;1 is not zero.

By virtue of the condition div B = 0, the trace of the
matrix Aii is zero (Att = 0) and the sum of the
eigenvalues vanishes, \ + h + L3 - 0 (Lo a = l, 2, 3
are eigenvalues) of the matrix A;.

In the present paper the magnetic configuration
with three nonvanishing eigenvalues is considered. We
assume that the initial configuration of the magnetic
field is current free with the matrix A,, of the diagonal
form:

A,, = diag Ia, b, - (a+ b)]. (l)
lf a and b have the same sign, the separatrix surface is z
-0.

In dimensionless form the MHD equations can be

written as

d,p +Y(pv)=0, a)
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where the adiabatic index is equal to T= 513.

As usual F = SnponE, where ps is a pressure at rs.

The inverse Lundquist number is i, = c2/4Eovos. k=
0.01.

The MHD equations (2-5) have self-similar
solutions when ? = 0 [3]. The discussions of the plasma

pressure effects are presented in [3,4]. In these solutions

p = p(t), vi(x, t) = w;iQ)xi, B;(x, t) = AiiG)xi.

Substituting these expressions into eqs. (2)-(5) we

obtain a system of ordinary differential equations for
p(r), matrices w,,(t) and AilQ)

p +w*P =0, (6)

w,,+w,owo,=- (Aft- Aki)Akj /P, A)

4,, +w*Au + A,owor=w,,A*j. (8)

In the simplest spatially nonuniform magnetic

configuration with a null point, the plasma velocity and

magnetic fields are described by matrices [3]

d,v+ (r,V)r, = - pv@Dl2p + j x Bl p,

p1d,r+(vY)r)/Q- trl 
xlr.l)^ ,,,a

d,B=Y x(v xB)- itLB, (V.B)=0,

P,o,j
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Fig. 1 Density p-a, electric current density /:b and
vorticity (o-c versus time for a2z = -0.025, and ar!,

= 0.025; APr = diag{0.5, 0.5, -1}.
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Fig. 2 Density p-a. electric current density ,,:b and
vorticity a)-c versus time for a\z = -0, and a\, =
4.025; Ali= diag{2, -1, -1}.

just then the magnetic collapse occurs.

In Fig. 2 the time dependence of the same value as

in Fig. 1 are shown for initial configuration described by

the matrices: w$ with w\r = 4.O25 and w0; = 0 for other

ij: Alt = diael2, -1, -l ). In this case the the separatrix

surface is perpendicular to the plane z = 0, and

excitation of the electric current directed along the

separatrix surface. We see that the magnetic collapse

developes much faster than in the previous case: at t0 =
1.9 the p, a,, j,tend to infinity.

We consider two initial confieurations of the

magnetic field.
In the first case the magnetic field is described by

the vector potential:

A(x,y, z)=-2€xze" +(l - e)xye,, (10)

where t < I characterizes the space inhomogeneity. The
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We assume that at the initial time the magnetic

field is current-free and is given by the diagonal matrix
given by eq. (1) which corresponds to the vicinity of the

magnetic null point.

The results of numerical solution of system of eqs.

(6)-(8) are presented in Figs. I and 2, where the time
dependences of the density p, the vorticity (w21 - wp)/2

and the electric current density (A2t - An)/2 are shown.

In Fig. 1 the time dependence of the density p,

vorticity a;. and electric current density j. is shown for
initial configuration described by the matrices: wou with

wlz = -0.025, wlz = 0.025 and wl1= 0. for other ij; Aoil

= diag{0.5, 0.5, -l }. In this case the separatrix surface

is in the plane z = 0, and excitation of the electric
current is perpendicular to the separatrix surface. We see

that at to= 35.25 the p, @2,j. tend to infinity. The

density shows nonmonotonic dependence on time. At
the initial stage the density of the plasma decreases and
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matrix At given by eq. (l) has the components d = I + €
and D = -l + €. The electric current is imposed from the
boundary to be parallel to the magnetic separatrix.

The second magnetic configuration is described by
expression

A(x,y, z)=-2txzey * exyez, (11)

which corresponds to the separatrix perpendicular to the

electric current imposed from the boundary. The matrix
A; has the components a = b = s with € = 0.1.

The system of MHD equations (2)-(5) has been

solved numerically in cubic computational region: -1 <
xls < l, -l < yls < l, -l 3 zls 31. We assume that, at /0
a plasma with a uniform density and pressure is at rest

in the current free magnetic field, described by the

vector potential (10) or (l l).
The boundary conditions correspond to the

excitation of the electric current. To described
magnetoacoustic waves we choose the vector potential

at the boundaries x = +1, y - +l of the form A(x, y, t) =
Ao@, y) + f (t + lnr), where Ao@, y) is given by the (11).

Function/({) is equal to -E,(( - l)tl€ for ( > I and 0
for { < 1. All the results of the computational
simulations presented below are obtained for i^ -
0.006, F= O.0l2,E= 0.01, Er = 0.01 and € = 0.01 or e =
0.5 in (l l).

The first series of the numerical calculations was
performed for the vector potential given by eq. (10) with
e = 0.01. The results of the simulations of the
azimuthally symmetric magnetoacoustic perturbations
are shown in Fig. 3 where a slice at z = 0 of the
distribution of the electric current density, iso-surface of
the electric current with iso-value equal 0.2 are shown.

We see the formation of the cunent sheet in the vicinitv

'-1 A

Fig.3 Distributiona) andlevel surfacewithlevel valueequal 0.2of thecurrentdensityfor€=0.01.

Jz

Fig.4 Distributiona) andlevel surfacewithlevel valueequal 0.2of thecurrentdensityfore=0.5.
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of the separatrices.

The second series of the numerical calculations was

performed for the vector potential given by Eq' (10)

with e = 0.5. In the Fig. 4 the distributions of the same

functions as in Fig. 3 are presented. We see the

formation of the current sheet and vortex sheets in the

vicinity of the separatrices. The explicit dependence of

the structure of the electric current sheet on z-axis is

obtained.

In the case when the magnetic configuration is

described by the expression eq. (ll) we have not

observed formation of the current and vortex sheets' The

results of the computational simulation is shown in Fig'

-1-rA

Fig. 5 Distribution of the electric current density for (11)'

We have studied the process of the driven regimes

of the magnetic reconnection in the 3D magnetic

configurations. In the first case' when the electric

current excited at the boundary of computational region

is mainly parallel to the magnetic separatrix, the

numerical simulations demonstrate the formation of the

electric current sheet and vortex sheets in the vicinity of

the separatrices. This qualitatively corresponds to

analytical solutions describing the magnetic collapse' In

second case, when the electric current excited at the

boundary of computational region is orthogonal to the

magnetic separatrix, the formation of the vortex and

electric current sheets have not been observed in the

computer simulations. Self-similar regimes of the

magnetic configuration evolution show that for the

magnetic collapse to appear in this case it takes a time

much longer than in the previous case.
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