
J. Plasma Fusion Res. SERIES, Yol.2 (1999) 516-519

Relaxation of a Magnetized Plasma
to States Other than Force-free

DASGUPTA Brahmananda, DASGUPTA Padmanabhal,

MYLAVARAPU Janaki S.. WATANABE Tomohiko2 and SATO Tetsuya2

Saha Institute of Nuclear Physics, I/AF, Bidhannagar, Calcutta 700 064, India
lDept. of Physics, university of Kalyani, Kalyani 741235, India

2Theory and Computer Simulation Center

National Institute .for Fusion Science, Toki, Gfu 509-52, Japan

(Received: 8 December 1998 / Accepted:22 April 1999)

Abstract
A theory of relaxation of a magnetized plasma based on the principle of minimum dissipation and

constancy of global magnetic helicity is presented. The theory explains the occurence of a wide variety of
relaxed states, which are not necessarily force free, in simulations and laboratory experiments. A solution

of the Euler Lagrange equation describing the states of minimum dissipation is accomplished using the

analytic continuation of the Chandrasekhar-Kendall eigenfunctions in the complex domain. Explicit
forms of the solutions are constructed using appropriate boundary conditions at the boundary. The

solutions, as expected, support a finite pressure gradient. The distinct feature of this theory is to show

that it is possible to realize MHD equilibria with finite pressure gradient in a single fluid system even

without a long-term coupling between mechanical flow and magnetic field.
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1. lntroduction
The relaxed states of a magnetoplasma, according

to Taylor's conjecture [], are obtained by minimizing

the total magnetic energy under the constraint of total

magnetic helicity defined by K = I e.naV. A variational

technique leads to the Euler-Lagrange's equation V x B

= ,1,8, where i, is a constant. The relaxed state is a force-

free state.

Taylor's theory, although quite successful in
explaining a number of experimental results, including

those of RFP, is viewed as inadequate by many workers.

Relaxed states as envisaged by Taylor have only zero

pressure gradient. Extensive numerical works by Sato

and his collaborators have established [2] the existence

of self-organized states with finite pressure, i.e. these
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states are governed by the magneto-hydrodynamic force

balance relation J x B = Vp. Several attempts [3,4] have

been made in the past to obtain relaxed states which

could support finite pressure gradient, a large number of
them making use of the coupling of the flow with
magnetic field. The novel feature of our work is to show

that it is possible for a single fluid to relax to an MHD
equilibrium with a magnetic field configuration which

can support pressure gradient, even without a long-term

coupling between the flow and the magnetic field.

The concept of minimum dissipation rate was used

for the first time by Montgomery and Phillips [5] in an

MHD problem to understand the steady state profiles of
RFP configuration under the constraint of constant rate
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of supply and dissipation of helicity and the usual
physical boundary conditions for a conducting wall. It
may be pointed out that the principle was also discussed

by Chandrasekhar and Woltzer [6] in a sequel to the

complete general solution of the force-free equation by
Chandrasekhar and Kendall [7]. It is also our conjecture
that relaxed states could be characterized as the states of
minimum dissipation rather than states of minimum
energy.

2. Euler-Lagrange Equation
We consider a closed system of an incompressible,

resistive magnetofluid, without any mean flow velocity,
described by the standard MHD equations in presence of
a small but finite resistivity 4. In presence of small scale

turbulence in the system, we may expect that the rate of
energy dissipation decays at a faster rate than helicity.
We therefore minimize the ohmic dissipation R =
I n jtdV subject to the constraints of helicity I n.naV.
A variational principle leads to the Euler-Lagrange
equation

VxVxVxB =AB, (l)
where, .rl is a undetermined multiplier.

3. Sofutions of Vx Vx V x B = AB
A solution of eq. (1) can be obtained in terms of

the Chandrasekhar Kendall eigenfunctions [7] which are

solutions of the equatiol V x 86 = iBo. The solution of
eq. (l) can be written as

B =La,Bn,

Here a,, are constants and, B, are solutions of the force-
free equation for complex l, such that V x Bn= Xo)n Bn.

B,=LanY(D,xYz+Vx1V@, xYz) n =0,1,2. (3)

with @, = J^ (ltnr)expfi(m0 + kz)), It| + k' = Ea2n, a =
exp (2nil3). It can be easily demonstrated that the
expression for I given in eq. (2) satisfies eq. (l) for zl =

The constants a2 and a1 as well as the values of
ha are fixed by assuming the boundary conditions for a

perfectly conducting boundary wall, given by

B.n=0, jXn=O at r=a.

It is to be noted that for the cylindrically symmetric
(m = O, ft = 0) state the boundary condition is trivially
satisfied and hence does not determine La. To get the
numerical value of )"for m * 0, we utilize the boundary

conditions and obtain La = 3.Il and ka = 1.23 as the

minimum values of La and ka for the m =7 state.

The magnetic field components for the m = 0, k = 0
state are given by

Br=0,

t ta, \l
Br= 72uolJ, tlrl+ 2Re | 7' a, J, @,drlll ,

| \-o t]

| ,- rl
B,= T'aolJo{Lr1+ 2Re | #at, Jrtilanlll . @)" "1" lur ., .,1

| ' 'l

4. Toroidal Flux, Field Reversal and Pinch
Parameters
Several quantities that have proven useful in

describing the laboratory experiments are the toroidal
flux, @. field reversal parameter F, pinch parameter @

and the helicity integral K.

Q, =)ftao 7a 
ls1la 

t+ zne 
| ft ,r, 0* rl].

l'''l
Bb\
<8,>

=+
J o (1(i + (u tl a) a2 J o (Loa) + (dzl a) aI o (1.o2 a)

I, (1a) + (d, |/ a) aI | @oa) + (azl ao) a2 J r 11a2a)'

Be@)
tJ=-

18,>
_LA

Jt A"a) + (atld)@2J | (hoa) + (a2ta)oJ I A"o2a)
J, @") + (d tl u) aJ | (lan) + (a2/ ail a2 J | (La2a)'

The toroidal flux parameter is obtained from @. -
2rlB, rdr. Also, < B. > refers to the volume average of
8.. In cylindrical coordinates the helicity integral is

defined by

K =4x2R I tArB, + A,B,)rdr .

where 2rR unl o ui! the lengrh and radius of the
cylinder. For the minimum value of La = 3.11,
corresponding to the cylindrically symmetric state ltt =
0,ft=0

Kl O: =12.8R/a ,

where the unit of KliD! is volt-sec. For values of volt-
sec 12.8 R/a, m = l, La = 3.11 is the minrmum
dissipation state.

Q)
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The pressure profile can be obtained from the

relation j x B = Y p. For the m = O, k = 0 state, the only
nonvanishing component of the pressure gradient exists

in the radial direction, B, being zero. The radial pressure

distribution is obtained from
rp0)= 1 
(ieB,-i,B)dr.

5. Results
The toroidal magnetic field profile, B. is plotted

against rla inFig. I and shows a reversal near the edge

of the plasma. The profile of the toroidal current "/. is

Fig. 1 A plot of the 8, against
symmetric state.

rla lor lhe cylindrically
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Fig. 2 A plot of the /, against rla lor the cylindrically
symmetric state.

also shown plotted in Fig. 2. The current vanishes at the

boundary because of the boundary conditions we have

chosen.

The values of both F and @ at the boundary r = a

are evaluated and F is shown plotted against pinch ratio

@ in Fig. 3. It is observed that F reverses at a value of @

= 2.4, (Aa = 2.95) whereas for the Taylor state the

reversal is achieved at @ = 1.2. However, this field
reversed state supports pressure gradient inconstrast to

the Taylor state.

The pressure profile is shown in Fig. 4 for the m =
k = 0 state with La = 3.0 which is the minimum energy
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F 0.0
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Fig. 3 Field reversal parameter F is shown plotted
against the pinch parameter @. The dotted curve
corresponds to the Taylor state.
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Fig. 4 The radial pressure profile vs /a.
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dissipation, field reversed state.

To conclude, the principle of minimum dissipation
is utilized together with the constraints of constant
magnetic helicity to determine the relaxed states of a

magnetoplasma not driven externally. This relaxed state

obtained from single fluid MHD supports pressure
gradient. This establishes that a coupling between
magnetic field and flow is not an essential criterion for
having a non-zero pressure gradient. Further, it is
shown that a non force-free state with field reversal
properties can exist.
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