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Nonlinear Dispersion Relation for Beam-Exited Plasma
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Abstract
Results of experimental study for generation of envelope soliton and the corresponding nonlinear

theory and also the analysis of dispersion relation in the beam-plasma system are discussed. We succeed

to obtain the nonlinear dispersion relation with a Gaussian type Green's function. We also tried to solve

the nonlinear dispersion relation numerically. As an example, a solution of the dispersion relation

showing two curves in o>k plane is represented which correspond to the beam electron dispersion

diagram. Both curves are quite similar to the solution derived from the linear dispersion relation.
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1. lntroduction
Hitherto, analysis of a dispersion relation has been

performed extensively because the dispersion relation

shows an important character of the propagation of
waves in a plasma. In the analysis, we usually use the

linearlization technique so that we can not discuss,

for example, an amplitude dependent phenomenon

(Kerr effect). Accordingly, we need something new

method to treat a nonlinear effect. We intend to solve

this problem by starting from a renormalization
technique and by using a Gaussian type Green's

function.

In this paper we consider a high frequency electric

field (elementary excitation) emitted by an electron

beam by so called 'large signal theory', when the beam

injected into plasma. The trajectory of a beam electron

is changed from linear straight line to curved line in the

presence of the electric field, i.e., when an electron

emits a quantum (elementary excitation) its direction is

changed to opposite side against the direction of
quantum by momentum conservation, while for the

absorption of a quantum, the quantum strikes the

electron to bend its direction. We introduce a quantity
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concerned with this emission and subsequent absorption

as Io which means collision frequency or self-energy

term.

2. The Nonlinear Theory
To introduce the curvature effect by the electric

field into electron's trajectory, we use the renormali-

zation technique which is initially developed by the

authors: Karpman [], Dupree [2], Weinstock [3], Kono

and lchikawa [4]. However the method of these authors

can not be applied directly to our case, since we treat a

coherent interactions, i.e., k = ftq, between beam's

modulated wave number ft and the wave number k1 of
surrounded plasma wave (plasmon's wave number) and

further we require the finite frequency width at

resonance, Imlo, where the life time of the elementary

excitation, r, is given as u = l/(2Relo), therefore we use

a Gaussian-type Green's function, which is utilized
initially by Horton, in ion-acoustic turbulence [5] and

define a diffusion tensor D;; instead of scalar function,

then the Green's function is described as:
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The eqs. (l)-(5) construct a closed set of
fundamental equation to analyse the nonlinear
dispersion relation or the soliton emission. To discuss
the amplitude dependence, a coherent 2nd-order quantity
E (k, co) E (4 r, - a) 61,, 1,,6,.,, = 1E (k, a) 12 i s important. If we
substitute a condition of coherence, k = kt, co = @r, into
the 2no-order quantity, eqs. (2) and (5), we find rhat an

importance of the Green's function G"(k - k1-->0,a,k.a

- olr - iIa) is crucial, while in the Green's function, eq.
(l), the terms m i 0 are proportional to k2. then they
vanish when we consider the limit t -+ 0, therefore the
most significant term is the ru = 0-th one.

Gfn'&.u.at;k'.d,ri y=-.r --l,' 4nDij lu_ dl
II l"-rtl \

' exp l - r-# \/-i\-o + O l 6r.16,r. (6)
\ {Du I

r/
We define that '1,' equals the square root of the ratio: Io
and Dii, which appears in the exponential function in eq.
(6) at resonance a- k.a - ilo = 0, then the following
relation is obtained:

Io- tll ^/t")= ,=-' Q)
{ D,,

As the eq. (5) is a operator, eigenvalue must be derived
for Xo, i.e., we multiply Green's function from the right
side to the eq. (5) and after integration, we divide the
Green's function again. It can be obtained also D;; by
substitution of eq. (6) into eq. (2) then the resultant
relation becomes:

c,ln6,*.oy l'D,,1k,a1=L . (r - y). st. (8)
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Fourier transformation of the above Green's function
becomes:

G (k, o, ot; k', r/, a y = -2i t4 7T (k' U ) . D, (k, u)l- 3/2'k'

s (-b)' ., A t3nn-l/4
ma mt 'i(-(()+c)'

. K r^-,o {2{iaCo + Ol . 6*.*, 6,,"t , (1)
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L. =.-- - u =4kikj . Dij(k,D) t2

c =k . o-i2o,

where the function K:._rz(x) is the modified Bessel
function and m = 0 term is very important and
Ktn@) = K'z(r) = Jn/Q*). exp (-x). We denote rhat

fl0)(k',a',a), 2o(k,a,ot), E (k,a) are the initial
distribution function and the collision frequency, the
electric field respectively. Then we can add the
following fundamental equations (2), (3), (4) and (5).

D,i &,1)) = (a), 
? I + ffF w,.,,'1'

C-4Qc-kr,u,k.D- atrt li,d,a;, Q)

E(k,(//!= -12
' -'- 2 l"- ,tl'

G"(k,u,

4 fo, lou ltLkr J )enf
a;k',D',of). ff1k', tl,ofS, (3)

I ou U(k,a,a;k', tl,olS

ff)1H,t,a;,

where the y (in eqs. (7), (8)) has a value of 0-l and the

C1 is denored as C, = lll(2n)l(e"lm)2{kikjlk2l.lf we
define a new quantity: Cf = {ll(2n)l(eolm)2Ikikjlk2l
(1 - y)er, then the D4 in eq. (6) can be replaced with
lE(k,k.a\12.f"(k,o,a4=

(4)
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where p = -iro and lElz = lE(k,p)12.
The electric field can be calculated from eq. (3), the

initial distribution function, flf,o) (k',a',p), (p' = -ial), is

given as:

f'Qr', ri p) = fio)1k' 1 n u6 1tl - uoy

*,.(:=\""^01-4\ . (lo)
'\zftkT"J '\ 27tkT"l

where the /{0)(k'), nr, n, are the no-dimensional beam

forming factor, the beam electron density and the

plasma density respectively. In actual calculation, we

putflor(/r) = o(l) = 1. Thus the electric field, E(k,p),
can calculate as:

E{k.p'1=12 ftf rJ|,Jia"

tt2[rtsn\inolu-ool' J lr-".1"- , . I_ 'exp 1- 

- 

'\/ p+rc I
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-+Z 
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Equation (11) is a nonlinear integral equation for
electric tield, E(k,p), the first term of which shows a

contribution of beam with initial speed u6 and it behave

actively by generating mainly the electric field, while
the second term represent the contribution of
maxwellian plasma. The both term interact each other

through the electric field. After some calculation with
respect to the first term, a relative permittivity,
e,(k,p,lEl2,2o), is obtained. Therefore dispersion

relation becomes as following:

e,{k.p.tEi.2o)= l +? a a/'',{ft)
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\l
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(13)

The equations (l l), (12) include the Io and it is
important especially when a resonance condition, ro =
ft.u, is satisfied, however an eigenvalue of the operator

eq. (5) includes also lEl2,a,k,u so that the situation is

complicated, so, we will discuss the most probable value

of them from our experimental data.

3. The Experimental Data
In experiment we use mirror magnetic field of 80

(Gauss) in center and mirror ratio of 1.4. A stainless

vessel for plasma region is 16 cm in diameter and 42

(cm) in length. The region is fed with argon gas from
l0-4 to 7 x l0-a Torr. A beam of 8 (mm) in diameter,

1.92 keV-18 (mA), is injected into plasma. Any plasma

density of l0r4-5 x l0r5 (m-3) in center is controllable.
A solitary wave appears as burst with time width
150-500 (nsec). The carrier frequency is =400 (MHz).

The solitary waves are constantly generated as an

intermittent burst in suspended time of every 4=8
grsec). The carrier frequency is ar = 2.505 x lOe (rad/s)

while the accelerating voltage is given by 1.92 (kV), so
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that the beam velocity uo= 2.59 x 107 (m/s) then from
the resonance condition, (D = k1.t) o, we can get the value

of k11 as ftrr = 103.3 (rad/m) = 100 (rad/m), while by our
report [6], the ltl is given as: lkl = l20n (rad/m).

Figure I shows a envelope soliton obtained by the

experiment. The probes are used as antennae. The signal

pass through coaxial cable with 50-O impedance and the

cable is directly connected to the HP-54542A 2GHz-
oscilloscope. The total length of probe (antenna) is 5

(cm), however only =1 (cm) of the tip will be

submerged into plasma. The terminal voltage at the

oscilloscope is =0.1 (V), so that the electric field is
expected as =0.1 (V/cm).

4. Soliton from the Theory
To get a soliton we limit the interacting velocity

region,

Time (ts)

Fig.1 A solitary wave detected by 2-GHz oscilloscope is
shown. Since the carrier frequency is 400 MHz,
then the phase is crowded, however. the phase is
confirmed to be continuous.

E{iz
o
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a
E

" 
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then the main contribution comes from the first term of
eq. (l l), and we get E(k,t) by inverse transformation.

r- r /., \
E(k.t1=3 ttrl lf Jrl'tb
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where the f(4,x) is an incomplete Gamma function. At
the limit t - O, E(k,t) -+ 0 owing to sinh [(ImL"l2)t)
and l(q,x -+ -) --> 0, while from the character ImIo *
exp{-Relot} we get E(k,t --> -) -+ 0 then the

elementary excitation has finite life time.

Figure 2 shows the calculated E(k,t) when the

beam electrons collide to ion wave. The following
constants are used: correlative length in velocity
space lu - v'l = lOa (m/s), the slowing down ratio

{*J "4 = (1/500), no dimensional constant y = 0.508.

We find that the collision frequency, 2" (k,a,t),

0.2
Time (psec)

Fig.2 An example of the calculated wave packet
(soliton) is shown. The following constants are
used. lu - u'l = 10a (m/s), y = 0.508, 7= {m"lmil1/2 -
(1/500).

becomes usually a function of carrier frequency, ft.us,
in the electron-electron collision, then the soliton does

not appear because the k.ao, oscillates so fast, however

if the response is retarded by ions corresponding to the

frequency {*JA' (ft.u0), then the soliton, having
a time width (l/roi), appears.

5. Dispersion Relation
As shown in the nonlinear dispersion relation eq.

(12) with eq. ( 13), the relative permittivity
e"(k,rtt,lEl2,2) is a function of a Io while the Eo

0.4

,(n,", Im I" l"\
,k ll, (14)

at=--J- , Q=1.3, y=5,
4C,lEl.t
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Fig.3 The relative permittivity e"lk,a,lEl2,2"l of electron
gas is shown, where the following constants are
used. lEl = 0.01, lu - u'l = 104 (m/s) and y = 0.72.
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Fig.4 The cross section cutting by zero plane in the

1 manifold of fig. 3, i.e., e,k,al = 0 is represented.
There are two curves. where the curve (tr) will be
a slow space charge wave of beam electron and
the curve (I) seems to be a fast space charge
WAVE.

depends on k, a and lEl2, so we must solve them

simultaneously. If we slice a manifold e"(k,a,lEl2.2o)
with the surface lEl = constant and y = constant, then the

situation is some what simpler and we can get a cross

section of zero-plane which will be expected to show

the dispersion relation under the condition lEl =
constant. Matters are too complicated, so, as an example

we neglect maxwellian term in eq. (12) and leave only a

beam term and examine to solve hereafter by numerical

method.

Figure 3 represents the case lBl = 0.02 and y - 0.6.

Figure 4 shows two curves (I, il) in o>k plane. It seems

that the curve (tr) is a slow space charge wave of beam

electron and the other curve (I) is a fast space charge

wave. Both curve are quite similar to those derived from

the linear dispersion relation.
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