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Abstract
A closure theory of turbulence so-called the Lagrangian direct-interaction approximation is

formulated for a passive scalar field advected by isotropic turbulence. Solutions to the resultant closure

equations for the correlation functions of scalar and velocity fields are shown to be completely consistent

with well-known phenomenologies on small-scale statistics of turbulence.
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1. lntroduction
We investigate a passive scalar field 0(x, t), e.9.,

temperature, particle concentration, dye, smoke, etc,

which is advected by turbulent velocity field and

diffused by molecular diffusion as

(1)

The velocity field ur(r, t) is governed by the Navier-

Stokes equation,

du, dr, t b *"j+ (i=r,2,3), e)a, *utdi =- P d;, - ' dxdx, \'- r'i -' J

and the equation of continuity,

du,

=j =0,oxi

where t is the time, .r is the space coordinate, p is the

pressure, p is the constant density, v is the kinematic

viscosity of fluid, and r is the diffusion coefficient of

the passive scalar. The summation convention is as-

sumed for repeated subscripts.
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The statistical properties of this system are different

depending on the Schmidt number s = v/r. It is

phenomenologically [-4] predicted that the passive

scalar spectral function @(k, r) defined by

wherc Z(k, t) is the Fourier component of the one-time

correlation function of the scalar field 0(r, 4 anO /OA
denotes a solid angle integration in the wavenumber

space, obeys different scaling laws depending on the

Schmidt number in the large wavenumber range: The

spectrum consists of a scaling function proportional to

k'sn followed by an exponentially decay for moderate s,

and the ft-r and the k't1/3 scaling ranges appear between

the ft-5l3 power law and the exponentially decaying

ranges in the large and the small Schmidt number limits,

respectively (see (l 3)-( I 5) below).

The main purpose of this paper is to show

analytically such a Schmidt number dependence of the

statistics of passive scalar fields based upon the
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basic equations (1)-(3) by developing the direct-
interaction approximation (DIA) t5,61.

2. Lagrangian DIA
2.1 Sparse nonlinear couplings

For simplicity of the analysis, we consider first the
motion of a fluid confined in a periodic cube of side L,
which will be set at infinity ar the final stage of
formulation. Then, we rewrite the Navier-Stokes
equation (2) in terms of the Fourier coefficients itlk, t)
of the velocity field as

= M'i-(k)

with

fi j(- p, t) fr^(- q, t) (5)

resents a nonlinear interaction between three Fourier
modes i;(t), it{p) and il;(q).We call this nonlinear in-
teraction appearing explicitly in the governing equation
the direct interaction between these three modes. Direct
interactions between fii(kr) and the other modes are de-
picted schematically in Fig. 1. There is only a single di-
rect interaction between an arbitrary pair of the Fourier
modes. This property, the sparseness of the nonlinear
couplings, arises from the constraint k + p + e = o in the
summation with respect to p and q on the right-hand
side of (5), and is essential in the formulation of DIA.

2.2 Assumptions
The DIA is formulated under the following two

assumptions. [i] The correlation between a triplet of
Fourier modes is assumed to originate mainly from their
direct interaction. If we removed the direct interaction
between three modes, then they would become
statistically independent of each other. [ii] Such an

artificial removal of only one direct interaction from the
system might cause very small effects to the entire
statistics because there are a very large number of
interactions in a high Reynolds-number system. The
second assumption has only to hold during the time
scale of the auto-correlation function of the velocity
field. The above two assumptions may be justified for
systems with a large number of degrees of freedom [7].

2.3 Langrangian fields
There have been proposed several DIA theories

depending on the choice of the statistical quantities for
which a closed set of equations is constructed, 

".g.,
Kraichnan's original DIA [5] and the Lagrangian history
DIAs [8]. The present formulation, described in detail in
Ref. [6], is different from them in the sense that it is
formulated with a set of two-time Lagrangian velocity
correlation and the Lagrangian response functions,
which are Galilean invariant. This Lagrangian statistical
quantities were first proposed by Kaneda [9]. Using tlle
Lagrangian position function V@, t lx', /') governed by

dv 0v1{ +u,* =0 0)dl ' oxj

with the initial condition ry(x, t I x', t') - d,(x - r'), we
can relate Lagrangian fields to Eulerian counterparts.
For instance, the Lagrangian velocity v iQ I x, t'), the ve-
locity of a fluid particle at time t which passed at posi-
tion r at time /'(< r), is expressed as

r^
v,(tlx'.t'1= | d'xu,(x,t)V@,tlx',t') (8)

J

! + v*'l n,ro, ,,otl

11
(k+ p+ q=6 1

M,^(kt=-L(24\'t - - |

2 \ L I lk^ 
Pti&\+k' P''&\l' (6)

where Fu(t) = 6- - k k /k2. The right-hand side of (5)
consists of a large number of terms, each of which rep-

mi(&r)
4(-&r - &s)

4(-kr - er)

4(-kr -

di(-&l - &2)

Fig. 1 Direct interactions between rj,(k,) and other
Fourier modes in the Navier-Stokes system, which
are expressed by triangles made by three Fourier
modes. We can see that there is only a single
direct interaction between Ai(krl and any other
modes. In this sense, this is a dynamical system
with sparse nonlinear couplings. The DIA
assumptions are explained as follows: Although a
removal of the triad interaction shown with thick
lines, for example, makes the three Fourier modes
uiki, Aikol andri;(-kr -ko) have no correlation,
the magnitude of the difference between the true
field and the fictitious field without this direct
interaction remains much smaller than that of the
true field.

ttf')t (*r)
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e{L) glx',fi= 
J A3x0{x,t)tlt@,tlx',{) (9)

61i1 = t'i-^'' [ [ ̂, 
dpdq o(r, p, q) p^'' q

y =zr [- dkkz@(k)

We apply the DIA assumptions to the Eulerian fields,
which have the sparse nonlinear couplings property, and

derive a closed set of equations for the Lagrangian field
correlation and response functions by the help of rela-

tions between the two kinds of fields such as (8).

2.4 Application to a passive scalar field
In order to apply the Lagrangian DIA to a passive

scalar field, we introduce, similarly to (8), the

Lagrangian passive scalar field,

A closed set of equations for the correlation and the re-

sponse functions of the Fourier component of 0Q) ate

then derived under the two assumptions described in

s2.2.
By a straightforward calculation [0] from the basic

equation (l) we can derive an evolution equation for the

passive scalar correlation function, while the response

function can be analytically solved. When the velocity
and the scalar fields ate statistically ho-
mogeneous, isotropic and stationary, the resultant clo-
sure equation is written as

3. Solution to the Closure Equation
It is shown [0-12] that the closure equation (10)

has solutions which are completely consistent with
phenomenologies. It is

@(k)=Cr7e-1t31'-5t3 (13)

in the inertial-advective range (k << min{ft1, k6},

Obukhov [1] and Consin [2]),

@(k)=CzXvlt2 e-tt2 k-l (14)

in the viscous-advective range (k6 << k << ks for s >> l,
Batchelor [3]) and

@ (k) = C zX r-3 g2t3 P-t1 
tt (1s)

in the inertial-diffusive range (ft6 << ft << k6 for s << l,
Batchelor, Howells & Townsend [4]. Here, the charac-

teristic wavenumbers ftK (Kolmogorov wavenumber), ftg

(Obukhov-Corrsin wavenumber) and fts (Batchelor

wavenumber) are respectively defined by

k*=(e / v3)"n ,

k"=(e | *zltta - fA 17*

kr= (el vK')t'o = stt2 kr

(16)

(r7)

(18)

4. Concluding Remarks
The Lagrangian DIA we have described here is a

quite simple closure theory applied to strong turbulence,

which is formulated under clear working assumptions.

The resultant closed system of equations has solutions

which are completely consistent with well-known
phenomenologies of small-scale statistics of turbulence

by Kolmogorov [3], Obukhov [], Corrsin [2],
Batchelor [3] and Batchelor et al. [4].

There are many attempts to explain DIA by

Reynolds number expansions (calledrenormalized
expansions) [4,15] or a diagram technique [6]. Even if
they yield a same set of closure equation, they do not

seem to capture the essence of DIA [5]. The DIA is a

theory for strong nonlinear systems, in which each one

of the strong nonlinear terms is treated as a perturbation

instead of the whole of the nonlinear terms as done in
other theories.
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The function Q is the Lagrangian velocity correlation
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work of the Lagrangian DIA for isotropic turbulence [6].
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the resultant closure equation (10) for the passive scalar

spectrum.
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