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Abstract
A new method by which the motion of the axis of a low-pressure vortex is chased automatically is

developed for the purpose of understanding of vortical dynamics. An equation which describes the

temporal evolution of a vortex axis is derived and solved numerically. This method is applied to a flow

field composed of two interacting pairs of anti-parallel vortex tubes to visualize their reconnection

process.
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1. lntroduction
It is commonly recognized that coherent structures

such as vortex tubes and layers exist in fully developed

turbulence and believed that they may play essential

roles in turbulence dynamics. In order to investigate

their dynamics, it is necessary to develop an efficient

method to educe their structure and to trace their

temporal evolution in complicated flows. In this paper,

we present an automatic method for chasing a low-

pressure vortex [1,2]. This method is successfully

applied to a flow field composed of two pairs of anti-

parallel vortices placed orthogonally to each other.

2. Formulation
We derive here an equation which describes the

temporal evolution of the axis of a low-pressure vortex.

Let us define the eigenvalues 2(') (i = l, 2, 3) of pressure

Hessian H"u = d2pldx"dx6 (a, b = 1,2, 3) and the

associated eigenvectors el') bY

H* "l' = f(i) tQt, e! e! = 1, (l )

where the summation convention is assumed for
repeated subscripts. Since F1,6 is a symmetric tensor, all
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of the three eigenvalues are real. Then, we assume'

without loss of generality, that 2.(r) > L(2) > ,l,(3). The axis

of a low-pressure vortex is defined as such a line on

which the pressure p takes a local minimum in cross-

sections normal to the third eigenvector ef;t, of H.6. lf
the pressure-gradient is normalized as I Vl | = 1, then

we have the identity,

-aD
gt^'' = =:- ." dx"

D -a .dx, a

Dt: at 
* d, d*, '

a)

on the vortex axis, where p denotes the normalized

pressure. The direction of el3) is chosen so that it makes

an acute angle with afllax,.

The time derivative DlDt taken as moving with a

vortex axis is expressed as

(3)

where xo = xo?) represents the position of the axis and

d,r,/dr its translational velocity. DifferentiatinC eg. Q)
with respect to time and using eq. (3), we obtain the

equation for the translational velocity as

@1999 by The Japan Society of Plasma

Science and Nuclear Fusion Research

339



aro ( d,l' I af 6,,;,,-----al 
-L-H* l=i \ --= . (4)dt \dx, -1 dtdx" Er

As will be shown in Appendix, the second-order tensor
def)lax,is written as

arf' S ( | aH^, ,,, ,.,\ ,i\di = ?-l 1,t, Jr, Af e'l,'e'i'1e';'' (5)
\-l

The temporal evolution of a vortex axis is obtained by
solving eg. @), in which the translational velocity is
expressed only in terms of information of the pressure
field.

3. Numerical Method
Here, we take two snapshots at / and t + At, say,

from a time series of the pressure field, which is
obtained by direct numerical simulation of the Navier-
Stokes equation. Then we describe how to predict a new
position at t + At of a vortex axis which was picked up
arbitiarily at / by the use of eq. (4).

3.1 Finite-difference approximation of time
derivative
The time derivative in eq. (4) is approximated by

the first-order finite difference in terms of field
quantities at successive times r and t + /t as

a'f df'*o'/ dx" -df'l dx,
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(6)

a)

Fig. 1 Sets of points in each step in the method of
automatic chase of vortex axes. I, Ct, a vortex
axis at t;2, Pt'^t, predicted points at t+ Lt;O,
C't + 

^t, candidate points; O-O-O-...-O-O, C, * o,,

union of C't+^r and extra points; Ct*^t, vertex axis
at f + Atwhich has evolved from C,.

points until there are no more candidates within two grid
sizes in each of the three coordinate axes. Here,
candidate points are such points on which L@ > O and a

swirl condition are satisfied [1,2] (see Fig. l).
[2] Predict the position at t + At of each candidate point
of the vortex axis chosen in step [l] by the use of eq. (4)
for the translational velocity. A set of these new
positions is denoted by P'* o'.

[3] Find first a grid point which is closesr to each
element in P' * at, then a candidate point which is located
within one grid-size from it in each of the three
coordinate axes, and which satisfies those conditions
given in step []. A set of these new candidate points is
denoted by (' t + dt 

.

[4] Connect each element in C't* ^t with its nearest-
neighbors if they are located within two grid-sizes in
each of the three coordinate axes, and finish it
otherwise. In this process, a point which does not belong
to C't * o' 

^uy 
sometime be connected. The union of

C't + at and these extra candidate points is denoted by
C'Dt + At. The length of resultant Cxt + at is in general
different from that of C' because separation and
reconnection of vortex axes may occur.

[5] Pick up only such sequences of points of C"t + at

that include at least two elements belonging to C't + at.

This condition should be introduced so as to exclude a

false termination caused by unavoidable numerical
errors. This condition is satisfied for the left one of the
two parts of Cil' + 

^t shown in Fig. I but not for the right.
Therefore, the latter is discarded, while the former is
retained and identified as a vortex axis Ct * d' which has

evolved from C'.

CC

W=N
ae'j) 

=e(:)t+^I 
- el)t

il a,t

wherel and eG)'denote the normalized pressure and the
third eigenvector at /. The difference of eqs. (6) and (7)
yields the righrhand side of eq. (4) as

a,i drf;, ai,*o, ldxo - s{r,*o,
Arar, - a, = Ar '

where use has been made of the relation.

,1,' ai'
€.- =-,- gXa

which follows from eq. (2).

3.2 Automatic chase
An automatic chase of vortex axes from t to t + At

is carried out according to the following steps:

[1] At time /, choose a vortex axis C'which is
constructed by connecting nearest-neighboring candidate

(8)

(e)

Cil,+At=@r*Al
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4. Application to a Pair of Anti-Parallel
Vortices

In order to examine the vortex interaction as well

as to check our new method described in the preceding

section, the method of automatic chase of vortex axes is

applied to a flow field which is obtained by the direct
numerical simulation of the Navier-Stokes equation. The

Fourier spectral method with resolution of 643 is used in

a periodic cube of period2tr.

As the initial condition we take two pairs of anti-

parallel vortex tubes which are placed orthogonally to

each other. The vorticity distribution across each tube is

given by the Gaussian distribution as

o, = a1.,expl_ a{(y - yJ2 + (z + z)z ll
- aroexp[- a{ (y +yo )2 + (z + z)2 l],

ay - - aoexp[- a {(x - xn)' + (z - z)' l)
+ o6exp[- a {(x + x)' + (z - z)' ll,

a,=o (10)

where, a = 50, foo = I00/n, Jo = ),o = 3Ax, and L.x = 2ttl
64 is the grid size. The circulation around each tube is f
= aoftla = 2. The vortex Reynolds number is then given

by Re7= lly = Asrylav = 200, where y = 0.01 is the

kinematic viscosity of fluid. The motion of low-pressure

vortex axes is traced by the present method of automatic

chase every At = 0.1 time unit.

The temporal evolution of the vortex axes at t =
0,1,5 is represented in Figs. 2(a)-(c). In each figure, we

display the loci of the sectionally local minimum of
pressure together with the edge of the periodic cube.

Two pairs of vortices are placed orthogonally to each

other at the initial instant (Fig. 2(a)). Each pair of
vortices travel perpendicularly to the other by their own

induced velocity and the two pairs approach each other.

At their closest positions, each pair is bended by the

repulsive velocity induced by the other as shown in Fig.

2(b). In the meanwhile, parts of two vortices which
belong to different pairs approach each other with
aligning their vorticity anti-parallel. Cancellation of anti-
parallel vorticity by viscous diffusion then becomes

effective, which causes vortex reconnections to change

topology of the vortex axes (Fig. 2(c)). As a result, the

two pairs of anti-parallel vortices pass through each

other and are cut into four separate vortices (cf. Figs.

2(a) and (c)).

5. Conclusions
We have derived equations which describe the
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(")

(b)

(c)

Fig.2 Interaction of two pairs of anti-parallel vortex
tubes placed orthogonally to each other. (a) f= 0,
(b) t = 1, (c) t = 5. Double arrows denote the
di rection of vorticitv.
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temporal evolution of the axis of a low-pressure vortex
and developed a new method which chases its axis
automatically. It was successfully applied to a system of
two pairs of anti-parallel vortex tubes to visualize a

sequence of the vortex reconnections clearly.
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Appendix
We derive here expression (5) of de(j)ldx.. lt

follows from definition (l) that

Lo) - elt H"o eyt, (l l)

orthogonality between dep/&, and e[). A differentiation
of the first of eq. (l) with respect to rc, on the other
hand, leads to

dH^^ de'j.' aL(i\ -.de'l'* e'i' + H,,n =: - 
- 

e::t + l"' TL . (13)dx, " "" dx, Qxc " dx.

On substitution of eq. ( 12) into eq. ( I 3), we obtain

Aet.i) ,dH^n ,i, r,r(Hob- A'i\6"b);; =e'^' jf e','e'j'

Y",, (14)

which, after differentiating with respect to x., leads to

alti\ del, . aH^, detl,-t-- = =L H.^ eti' + e')' -"" e'i,t + e(:\ H-^ --!sxt. ox, ox(. "" dx.

^ , ,. 0e1' . aH-^ . de"'
= 7t') 

-^ 
" e,.l\ + e,)t :" et:t + 7(i\ et:t -::odxrdxr""dx.

,,,dHou t i,=e'i'Af e'i', (12)

where use has been made of eq. (l) and the

An inner product of eq. (14) and e!) (j = l,2,3, j + i)
gives

de',j' aH-^
17'j'-7'i'1at;'a?=- r':';; e'it, G+j), (15)

where e!)e[i) = 6, has been used. Since 0ef;)10x, is
orthogonal to e!''), then def)10x" should be written in
terms of the other two components (eq. 115';'1 of ef) (j +
i ). Thus, we finally find that

t_\
a"!'_ $ I r dH^n ,,, ,,,'l -,,,a; = ?- | 1,, Jriff- ""1"'';'1";" (16)

- 
iyril\'- I

as long as LG) + 1(i\ fot i + j.
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