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Long Term Evolution of Drift vortex structures
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Abstract
We obtained perturbation theory solution for a vortex lattice in the framework of the Hasegawa-Mima

model for small but finite amplitudes of vorticity. For bigger amplitudes we elaborated relatively simple but fast

and exact numerical method for the simulation of long term evolution of drift vortex structures. We carried out

numerical simulations of the evolution of symmetric and antisymmetric vortex lattices for many linear wave

periods. periodic and quasi periodic regimes were observed for small initial amplitudes. Quasi chaotic generation

of higher harmonics was observed for bigger amplitudes. It was also emphasized that the neglect of the linear

dispersion term in stability problems of vortex structures is incorrect even for large vortex amplitudes.
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1. lntroduction
Waves of the vorticity, monopole and dipole

vortices, vortex chains and lattices play an important

role in transport processes and turbulence in a

magnetized plasma as well as in planet atmospheres.

Their evolution is governed by different modifications

of the Hasegawa-Mima (HM) model, which features and

applications were reviewed recently in [1]. In the

Section 2 the HM model for drift vortex structures in

plasmas and its symmetry properties important for

numerical simulations are shortly reviewed. It is also

discussed the possibility of neglecting linear or

nonlinear. terms in this model. In the Section 3

perturbation theory solution for the antisymmetric lattice

of vortices of small but finite amplitude is presented. In

the Section 4 our relatively simple but sufficiently exact

and fast code for solving numerically Cauchy problems

for the HM model is shortly reviewed. Conclusions are

made in the Section 5.

2. Model
Let us consider a plasma which is inhomogeneous

in x-direction (t being the characteristic inhomogeneity

length) in an external magnetic field of intensity B

directed along the z-axis. For low frequency

perturbations we can treat electrons as massless fluid
and use quasi-neutrality condition. In this way we obtain

the following expression for dimensionless electron and

ion fluid densities, n = exp(<B + €r), where @ is the

dimensionless electrostatic potential e@17", T" is the

electron temperature, e is a small parameter which

allows to obtain HM model equations. Ion cyclotron

frequency @s = eBlMc and ion sound speed c"= (T.l

M)ttz determine characteristic dispersion length r" = a'r7

oB, the small parameter is equal to the ratio rslL- lon
fluid equations in the low frequency limit lead to the

equations for the electrostatic potential @ and ion fluid

velocity v. In the first order in e we obtain

V'v1 = 9, v1x er=Y@3
wr = (e,x V)@r, V x vr = e,A,iDt.

In the second order in e we obtain from the

compatibility condition the HM model equations (index

I of perturbation theory is omitted below):
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dYl dt + J(@, Y) = a@/dy, y = <D - L,@

where @is the electrostatic potential and Yis potential
vorticity. J (@, Y = )iD I dx. 0Y/ 3y - dYl dx. 0@ / dy. The
HM equations are written now in dimensionless
variables ta{, xlrs, yl rs, e@/ T"e.

The Jacobian nonlinear term in the HM model is a
very particular one. For small amplitudes we can neglect
this term and restrict ourselves to the analytic solutions
of the linear theory. But the neglect of the linear term
d@l3y for large amplitudes of @, Y tn the stability
problems is incorrect. The value of the Jacobian J(@,
Y) depends not only on the amplitudes of @ and y, but
also on their possible mutual functional dependence.
Neglecting the linear term in advance, as it is done, e.g.

in numerical simulations of [2), we approach to the
stable state with tending to zero nonlinear term, so at the
final stage linear dispersion term becomes important and
cannot be neglected. Such numerical simulations don't
reproduce the physical effect of the dispersion of vortex
structures due to the emission of drift waves and this
stability analysis is physically incorrect.

The HM model is invariant to the inversion of the
time and of the drift direction t -) -t, y -) -y and to the
simultaneous inversion of the inhomogeneity gradient,
the electrostatic potential and the vorticity x -+ -x, @ -+

-@, Y - -Y. Due ro the last symmetry initially
antisymmetric in the x direction solution remains
antisymmetric, but the symmetric one looses its
symmetry. In the limit of very small amplitudes
symmetric solutions preserve their symmetry since
linearized equations are invariant to both x -+ -x and @
+ -@, Y -+ -Y transformations. This holds also for
finite amplitude solutions with zero Jacobian nonlinear
term, e.g. for the evolution of initially point-sized
vortex.

3. Perturbation Theory
For small but finite amplitudes we obtained

solutions to the HM equations by multiple-time scale
formalism. We considered double periodic lattice of
vortices. So our initial conditions had the form (a is the
characteristic amplitude.l:

Y=asinx(l +siny).

For small but finite amplitude we obtained solutions of
the form

Y=s(Yo+aYt+...),

Long Term Evolution of Drift Vortex Structuresak

dl0t = dldto+ q,d/dt + ..., tn= otnt.

In this way we obtained in zero approximation

Yo = sin.r (l + sin (y + ts/3)).

In the first approximation (resonant terms are absent in
this case) we obtained:

Yr = 0.5 sin 2x (sin (y + ts/6) - sin (y + tol3)).

The second order solution is as follows:

Yz = l/8 ( I - cos (tsl6)) sin -{ -
3/8 (l - cos (1616)) sin 3x +
ll2 sin x (sin (y + rel6) - sin (y + ts/3)) +
3/8 sin.r (cos (2y + to/2) - cos (2y + to/3)) +
3/16 sin.r (cos (2y + to/3) - cos (2y + 2tol3)) +
lll10 sin 3 (sin (t + to/11) - sin (y + tol6)) +
11/32 sin 3.r (sin (y + tol3) - sin (y + to/ll)) +
7/120 sin 3; (cos (2y + tslT) - cos (2) + t0/2)) +
7 /176 sin 3x (cos (2y + 2tsl3) - cos (2y + to/1)).

Cancelling the resonant term in the second order
solution, we determine the nonlinear frequency shift a2/
12 in the Yo term:

Yo = sin x (l + sin (y + tsl3 + t2112)).

4. Numerical Scheme
For larger amplitudes a> the perturbation theory

doesn't work and we carried out numerical simulations.
On each time step we evaluated the electrostatic
potential @ from known values of the vorticity tf. Itis
useful to do this by the Fast Hartley Transform (FHT)
instead of the Fast Fourier Transform (FFT). The FHT
needn't the use of complex variables, coincides with its
inverse transform and is as fast as the FFT. The FHT
transforms of @ and Y are as follows:

@rr = llN 2 A1,,y cas (2ttkk'/N) cas (2nll'/N),
Ytr= llN 2 Byy cas (2tukk'/N) cas (2nll'/N),

where cas 0 = cos0 + sin4 the summation over ft', /' is
performed from 0 to N- 1. For this 2D FHT we used
the direct product of two lD FHT presented in [3]
which we modified to the faster form by storing index
permutations in the computer memory in advance and
combining the FHT transform with the calculation of the

linear part of the evolution operator.

336



Goloborod'ko Y.Y. et al., Long Term Evolution of Drift Vortex Structuresak

So we obtain @ from Y by the division A*t = Br,y'Dr,t

with the scalar operator D defined as

Dn= | + (Nlr)2 (sin2 (llklN) + sin2 1nllN11,

which is the same as the corresponding FFT operator.

But to reproduce the linear evolution part )Yldt = 0@l

fu of the HM model we used more complicated operator

S*r= sin(2nllN)l(2nlN)Dru so the linear evolution is re-

produced by the formulae

Bto = Bto(0)'

Bu= B*r(O) cos (S11r) - Bt,rv-r(0) sin (Sur)' "'
Br.rs-r = BrN r(0) cos (S0," 1 T) - Bkt(O) sin (S1,ry-1 t)

where z stands for the time step, in our case r = 2nlN, N

= 256.

Different initial conditions were considered'

namely the antisymmetric in the inhomogeneity profile

direction Ox

Y(t=O,x, l)= a sin-r(1 + sinY)'

the symmetric conditions with nonzero mean vorticity,

(lrl = 1, ... , 8):

Y(t = 0, x, y) = u ((l - cos x)12) ((l - cos y)12)^

and the point-sized initial disturbations of the vorticity.

For the modelling of the Jacobian nonlinear term

we used the Arakawa scheme [4]. We omitted in this

scheme terms which mutually cancel and obtained the

procedure of evaluation of the Jacobian W of two arrays

F and G on the N x N grid illustrated below by the

fragment of the corresponding subroutine

797 = (F(t, JM) + F(tP, JM) - F(t, JP)

- F(rP, JP))*G([P, J)
TEZ = (F(tM, JM) + F(1, JM) - F(tM, JP)

- F(r, JP))*G((M, J)
zTE = (F(IP, J) + F(IP, JP) - F(IM, J)

- F(rM, JP))*G(t, JP)
TZE = (F(tP, JM) + F(tP, J) - F(tM, JM)

- F(rM,J))*G(r, JM)
ZUB=ZET-TEZ+ZTE-TZE
ZET = (F(tP, J) - F(t, tP))*G(tP, JP)

787 = (F(t, JM) - F(tM, J))*G([M, JM)
zTE - (F(r, JP) - F(IM, J))*G(IM, JP)
TZE = (F(IP, J) - F(1, JM))*G(IP, JM)
ZUB = ZUB + ZET - TEZ + ZTE - TZE

w(I, J) = ZUB

where 1P stands for I + 1, IM for 1 - I and so on.

Obtained in this way values must be divided by 12 h2, h

is the grid step which in our calculation was equal to the

time step 211256. Time evolution was realized by the

leapfrog scheme. Program was written in FORTRAN-

77 and run on the Pentium 166 MMX. Machine time for

one time step was around 2 seconds on the 256 x 256

grid. Energy, iDYdxdy, and mean square vorticity

IT td*ay integrals were conserved with less than one

percent error for thousands of time steps. So our

relatively simple code seems to be sufficiently fast and

exact one.

For the point vortex initial condition numerical

simulation reproduce anisotropic and non-self-similar

Green function of the linear theory, since the nonlinear
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Fig. 1 Contour plots of the vorticity describing temporal
evolution of an antisymmetric vortex lattice with
amplitude a = 1 (left column) and of an initially
point-sized vortex (right column). Time values are
12x,24r and 48a (from the top to the bottom).
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term exactly vanish in this case. Contour plots of the
vorticity are presented in the right column of Fig. l.
Values of time are equal to l2r,24tr and 4ga (from the
top to the bottom). For symmetric and antisymmetric
lattices we obtained periodic and quasiperiodic solutions
for d, < 0.5. Antisymmetric solutions were in a good
agreement with our perturbation theory for q, < 0.25.
Quasi chaotic generation of many higher harmonics in
the time of few linear wave periods was observed for o
> 0.5. Contour plots of the vorticity for the antisymmet-
ric lattice with a = I are presented in the left column of
Fig. l.

5. Gonclusions
Linear dispersion term cannot be neglected in the

HM model for drift vortex structures in plasmas. So the
results of the numerical simulations [2] are applicable
only to the homogeneous plasma or to the top domain of
density profiles like n = exp(@ - e2x21, since for such
profiles inhomogeneity effects are present only in the
order €2, but the HM model is the first order in e theory.

Combining rationalized Arakawa representation for

the Jacobian nonlinear term with Fast Hartley Transform
for calculations of the potential @ from the known
vorticity Y and of the linear evolution part of the HM
model, we obtained relatively simple but sufficiently
stable, fast and exact numerical code. This code allowed
us to perform many numerical simulations of the
temporal evolution of vortex lattices and initially point-
sized vortices for large time intervals of many linear
wave periods. We observed vortex latticesi in small
amplitude periodic and quasiperiodic regimes, described
also by our multiple-time-scale perturbation theory
solution, and quasichaotic generation of many
harmonics when the dimensionless amplitude was of
order l.
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