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Abstract
Two dimensional (2D) MHD equilibria of a field-reversed configuration (FRC) influenced by the

end mirror fields are investigated. 2D numerical equilibrium code incorporating the end mirror effect is
used for this study. The results of this calculation indicate that the shape of the axially elongated
equilibrium is changed by the end mirrors. Averaged beta (B) are obtained from these numerical
equilibria. The dependence of (B) on the X. is compared with Barnes relationship. Here, X" is the ratio of
separatrix to the wall radius. Numerical results for the mirror ratio (R.) is 1.0 indicates good agreement
with Bames relationship. For the case of R. > 1.0, numerical results come to differ from this relationship.
This analysis shows that large R, makes X, large and limits the domain of &.
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1. Introduction
An FRC plasma [1] is one of the compact toroid.

This plasma has high averaged beta (B) from 0.5 to 1.0.

Here, (B) is the volume average of B within the
separatrix at the mid plane of z = 0. Because of such a

characteristic, this plasma may be influenced by the
change of external magnetic field. The modification of
the mirror ratio (R.) at the end of the FRC is one of the
example of this. This mirror effect may give a

possibility of equilibrium shape control. As an actual
example, the equilibrium of FRC plasma confined
within the geometry of FRC Injection Experiment (FIX)
machine [2] is thought to be governed by the end mirror
fields because of its large mirror ratio from 2 to 6. The
equilibrium shape and its characteristics are, then,
expected to be clarified with the aid of numerical
computation of the FRC equilibrium introducing the
mirror field at the end region. Especially, it is important
to consider the change of B value corresponding to the
change of mirror ratio with numerical computation.
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Because the change of B value thought to affect the
nature of the stability and the transport. The purpose of
this study is to investigate the dependence of (p) on R.
together with the shape change.

2. 2D Equilibrium Galculation Model
A two dimensional MHD equilibrium code we have

developed [3] is used for this study. Because the FRC
plasma is axially symmetrical in the cylindrical
coordinate system (r, 0, z), the equilibrium configuration
is determined by solving the Grad-Shafranov equation
(Eq. (l)) in (r, z) plane.

L*tp(r.z)=ro0 ff Pi -d'v - -rdP(v)or1, oi)* a*=-r'i' Q)

where tgis the poloidal flux function and P(r1r) is the
scalar pressure profile function which depends on the
magnetic flux function 14. In this code, the iterative
method to deal with the nonlinear eigenvalue problem
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[4] is used to solve Eq.(l).
As P(r4) the following function is assumed.

IdP(V) f -c(l +ey; (V/<0)

drtt \-rr-* (V/>0), Q)

Here c is the eigenvalue, € and Tare profile parameters.

In Eq. (2), V is negative inside the separatrix and

positive outside the separatrix. We can control the

separatrix radius by the value of e [5]. When the value

of e is larger, the separatrix radius become smaller. The

separatrix shape can also be changed by 7 without

mirror effect [6]. A larger value of Tproduces a race-

track shape equilibrium and a smaller value of 7
produces elliptical shape equilibrium.

The boundary condition used in this code is shown

in Fig. 1. Here, ry - 0 at r = 0 and on the separatrix, Jtyl

0r=O at e = 0 and z = zr- which express that field lines

are parallel to z axis. The perfectly conducting wall

condition is employed at the wall position as \I = \t, =
1, so the flux is conserved within the conducting shell.

Therefore, the effect of mirror field can be incorporated

with this code by diminishing rn2, that is the wall radius

at the mirror position z 2 zz. The calculative domain

shown in Fig. I contains the taper region which is the

area from z= ztto zz. It is difficult to generate rectangle

meshes of the equal size in this region. The problem

induced from this tapered region is overcome by the

grid generation method [7] to be able to optimize

meshes in r-z domain.

3. Results
In the first, two types of equilibria are calculated

without end mirror effect. The one is calculated with the

small gradient of P(yr) near the separatrix (y= 25.0 in

Eq. (2)), and the other with the large gradient ot P(V) 0

dV\r.z = O)T=" dV(r,z= z,)
T=u

= 200.0 in Eq. (2)). These results are shown in Fig. 2(a)

q=25.o) and Fig. 3(a) (y= 200.0). In the case of 7=
25.0, the equilibrium shape is elliptical and in the case

of 7 = 2gg.g, equilibrium shape is race-track. Where

elliptical shape equilibrium denotes that the flux

function increases gradually from the mid plane (3 = 0)

to the edge of the FRC plasma, and as for the race-track

o (r)

o (o)

=._:_

Fig. 2 A series of 2D equilibria tor y = 25.9 and e = 40.0
for increasing F-. The values of R. are (a) 1.00,
(b) 1.23, (cl 2.04, (d) 4.00.

Fig. 3 A series of 2D equilibria tor y= 2OO.O and € = 40.0
for increasing B-. The values of R- are (a) 1.00,
(b) 1.23, {rcl2.04, (d) 4.00.

(a)
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14

V(0,2):0 V=A on the separatnx

Fig. 1 The boundary condition for the 2D FRC
equilibrium with the end mirror field. The
perfectly conducting shell is assumed at the wall
position. The mirror field is generated when the
condition of r*, > r*, is satisfied.
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shape equilibrium, the flux fiction increases steeply near
the edge of FRC. When 7- 25.0, the pressure gradient
near the separatrix is smaller than the case of T= 200.0.
Hence the axially distribution of flux surfaces are
thought to become gradually in the elliptical case. These
two types of equilibria without mirror fields (R. = 1.0)
are used for the initial condition to explore the
difference of the end mirror effect between two types of
equilibria. In this study, thin and long FRC model as

observed in the experiment, X, = 0.35 - 0.45 and /. >
10, is used for initial condition. Here, /, shows the
separatrix length normalized by the wall radius.

Results of calculations executed against R, from
1.0 to 4.0 are shown in Fig.2 and Fig.3. In these
calculations e is fixed at 40.0. The separatrix shape with
the ellipse in the initial (Fig. 2(a)) is changed to rhe
race-track shape (Figs. 2(b),(c),(d)) according to the
increase of fi.. This variation occurs in R, > 2. The
race-track shape in the original state (Fig. 3(a)) keeps
the same independently with R. (Figs. 3(b),(c),(d)). In
the both cases, X, increased and l, decreased according
to the increase of Rm. Suzuki and Hamada [8] discussed
the dependence of X, on the R. for the thick FRC
equilibrium as X" = 0.8 - 0.9. Their results are similar to
those of this study in that X, is saturated when R,
reaches the sufficiently large value. In the case of their
results, X. is saturated forR. > 5. In our results, X. is
saturated for R. > 2. Those difference between the two
results may be caused by the difference of &.

Averaged beta are calculated by using these
solutions of 2D equilibrium. An averaged beta (B) of
the FRC is defined as follows [9].
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Fig. 4 The average B is displayed as a function of the
mirror ratio F..

region, the FRC equilibrium is not sufficiently
influenced by the change of R.. It is likely that the
saturation of (B) is caused by the reason described
above.

4. Analysis of the Averaged Beta
Ifthe conducting wall is sufficiently longer than the

/., and there are no plasma pressure outside the
separatrix and no end mirror effect, the well known
condition derived from axial force balance is satisfied
for the FRC [9].

(0)=r_ Lx!.\'/2
(3)

Here BQ) indicates the radial profile of the beta value.
The integral of Eq. (3) is performed within the
separatrix at z - 0. Figure 4 shows the dependence of
(0) on R.. In this figure each solid marker is obtained
from a numerical 2D equilibrium solution by using Eq.
(3). Fig. 4 indicates that in the initially elliptical case for

T=25.O, (B) is changed from 0.95 (X, =O.45,1"= 14.3,

R, = 1.0) to 0.98 (X, = 0.63, /, = 9.1, R, = 4.0). The
increment of (B) is small in this case. In the original
race-track case for T= 200.O, (B) is changed from 0.84
(X, = 0.45, l"= 72.8, R. = 1.0) to 0.94 (X, = 0.6, /. -
9.3, Rm = 4.0). The increment ratio of (f) for T= 200.O

is larger than for T - 25.0. The increment of (p) is
mainly occurred from R. = 1.0 to R. = 2.0. When the
R. increases, /. decreases as shown Fig. 2 and Fig. 3. If
the edge of FRC pushed into the left side from the taper

(4)

Equation (4) called Barnes relationship. In this
study, the dependence of (p) on X, under the end mirror
effect is compared with Barnes relationship. X, can be
varied by changing the value of e for this calculation.
These results are shown in Fig. 5. In this figure, all
calculations are performed at y = 25.0. When R. = | .Q,

the numerical results show the good agreement with
Bames relationship. According to the increase of R., the
relation between (P) and X, of numerical results come

to differ from those of Eq. (4). In the case of R^- 2.04,
(B) varies from 0.9 to 0.98 against the small change of
X.. Fig. 5 indicates that a large R. produces the
equilibrium with large X. and limits the domain of X..
The mirror fields contribute the magnetic pressure
toward the axial direction. As a result, the total magnetic
pressure for the axial direction is increased by the mirror
field. The integration of plasma pressure inside the
separatrix should increase to balance the magnetic

(B)=4 1" pr,,,a,.
r: J0
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Fig. 5 The average B is displayed as a function of the

X".The solid line is obtained from Barnes relation
shiP.

pressure. For those reason, the relation between (B) and

X. may shift from Barnes relation as shown in Fig. 5.

5. Conclusions
2D numerical equilibria of FRC under the effect of

minor fields are obtained with the boundary condition

shown in Fig. l. In the case of y=25'g calculations' the

equilibrium shape is elliptical at R' = 1'0' According to

the increase of R., the shape of equilibrium changes to

race-track type. On the other hand, when T= 200-0, the

equilibrium shape is race-track ot R. = 1'0 and is kept

original state for the condition of R' > 1.0. The

dependence of (B) on R. is studied. The increase of (B)

is observed when R. changes from 1.0 to 4'0. The

increment ratio of (p) for T= 200'0 is larger than for 7=
25.0. The increment ratio of (B) against R- may

depends on the pressure gradient near the separatrix'

The dependence of (B) on X, under the influence of end

mirror field is compared with Barnes relationship. At R'

= 1.0, the numerical results indicates good agreement

with Barnes relationship. For the condition of R* > 1'0,

numerical results are differ from Eq. (4) are shown. So

far as this study is concerned, large R. (R* > 2.0) makes

the X. large and restricts the domain of X'.
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