
Plasma Fusion Res. SERIES, Vol.2 (1999) 188-l9l

Interpolation of Magnetic Surface Functions
fo" an Axi-Symmetric Plasma

Ya'4AGUCHI Taiki and MAEYAMA Mitsuaki
Saitama University, Urawa, Saitama 3j8-8570, Japan

(Received: 8 December 1998 / Accepted: 6 Mav 1999)

Abstract
Informations of the magnetic surface functions of magnetically confined plasma are indispensable

for equilibrium, stability and transport analyses.
In this paper, in order to identify a realistic surface functions and compare those with ones which are

introduced from Taylor's relaxation theory, we propose a code to interpolate these surface functions for
an axi-symmetric plasma from experimentally measured data.

To confirm our code, we used the data which were analyzed from known functions given as a
measured data. As a result, we have developed a code which can derive surface functions I and P. Effects
of measurement error on those functions are also examined.
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1. Introduction
A reversed field pinch (RFP) has a property thar

plasma itself makes magnetic fields which are necessary

to confine plasma. The self-organization phenomenon is
explained by Taylor's relaxation theory.

From theoretical considerations or models of this
relaxation processes, forms of the magnetic surface
functions I = rBt and P, where B, is a toroidal magnetic
field and P is a kinetic pressure, are derived. Giving
these surface functions, Grad-Shafranov equation can be

solved for equilibrium, stability and transport analyses .

We are developing a code to interpolate magnetic
surface functions from experimentally measured data.
The merits of this code are as follows:

r We identify surface functions from experimental
data and compare those with theoretical ones.

. We can analyze experimentally obtained
equi I ibrium configurations.

o We can obtain the time history of the helicity (K

= /uo A.Bdv; which is a crucial parameter of the
relaxation theory.

As numerical method, we use the least-square
method [1]. In $2 we explains equilibrium analysis code
used in the least-square method. In g3 the algorithm of
this code is described. In g4 and <5, numerical results
are shown. In $6 the conclusions are summarized.

2. Equilibrium Analysis
In the cylindrical coordinate (r, Q, z) (Fig. l), MHD

equilibrium of an axi-symmetric plasma is described by
the Grad-Shafranov equation:

dP(w\ I(tt/) dl(wl
r -------:--- + -fi ------i- in Plasma VodV For dvt

L,{

(1)

in Vacuum { a)

@1999 by The Japan Society of Plasma

Science and Nuclear Fusion Research

188



Yamaguchi T. et al., lnterpolation of Magnetic Surface Functions for an Axi-Symmetric Plasma

(3)

where eois an unit vector of Q, JEis a current density

following @ direction, "/" is that of external field control

coils.
The code 'EAFP' [2] can solve the Grad-Shafranov

equation on conditions of arbitrary functions 1(tg) and

P(ry) and geometry of the limiter and conducting shell

as a free boundary problem.

3. Algorithm for Least-Square Method
To use a least-square method code, we must

establish forms of model functions and choose types of
measured data.

For convenience the magnetic surface functions are

simply shown:

vacuum vessel

Fig. 1 The cylindrical coordinate in toroidal geometry.

Fig.2 A typical equilibrium by EAFP and arrangement of
flux loops o.

Fig. 3 Flowchart of least-square method.

where k shows the number of flux loops and Cr, Cr, "',
C, are weight coefficients which depend on a variance

of data. In this analysig, we simply use reciprocals of
squares of measured data for weight coefficients. Finally

the unknown parameters and magnetic surface functions

I and P are obtained by iterative calculations.

4. Interpolation
We analyzed using two forms of model functions

as follow.

B=ryxeo+Leo

I=f(V,at,a2,..')

P=g(V,bt,b2,-..)

(4)

(5)

where a;, ,i are unknown parameters and f, g are func-

tions of a model.

As for measured data, we use poloidal flux yr at

some points of vacuum vessel surface, toroidal flux t44,

F-value, @-value and Bs of a B value at a plasma center.

An example of equilibrium which is analyzed by EAFP

and positions ofpoloidal flux coils are shown in Fig. 2.

First of all, to confirm our code we used the data

yr+ which are obtained from the EAFP analysis as

measured data. For this EAFP analysis we use magnetic

surface functions [3] such as

(6)

a)
where y is a normalized value of rAs, L, a and Bs are

assumed parameters. In this analysis, we use )'= 1.2, a
= 4 and Fo = 0.1.

A flowchart of this code is shown in Fig. 3.

Because of nonlinearity of this problem, we use

Marquardt-method [4]. At first we establish initial value

of unknown parameters. Using those parameters, EAFP

calculates V, Vo, F, O and Bs. The unknown parameters

are improved to minimize the functional:

k

t =2. C,, (Vi - V)' + Cz(Vo - VD'
l=l

+q(F-F")2 +Co(O-O.)'
+ Cr(Fo- Ft)'

f (w\= t * l( vt + 
(l -'lf.')

\ cr+l 
)

P* (v)= l.S1ov $ - v2 | 3)

(8)
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Model L: In this analysis we analyzed using model
functions 11, Plfor least-square whose interpolation
functions are same to those of 1* and p*. The
unknown parameters are L and Bo.

Model 2z We used model functions 12, P2 for least-
square whose forms are different from 1*, p*:
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Fig. 4 Profiles of measured data /*, P* and converged /r,
P, without an artificial noise.
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Fig. 5 Poloidal flux in noise-free case, with 5olo noise and
at the converged result.
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Fig.6 Profiles of l*, P* and 12, P2 provided 5% noise.

6. Conclusions
From analysis using Model 1, it is checked that if

the forms of surface functions are equal to those of
reference functions, we can obtain original surface
functions. As the result of analysis using Model 2, it is
concluded that if we select model functions which can

approximate /x and P* sufficiently, we can obtain the

surface functions. And it was found that in order to set

M

I, (V)= | +2 a,0 - v/\t

N

P"(U/)=2 U,v'

(e)

(10)

where M = 5, N = 3 and a,, b; are unknown
parameters. In this analysis, we append constraints
on P that P has a maximum value and dPldvr is
zero at magnetic axis.

As a result using Model l, we obtained parameters

which were equal to the exact parameters L= 1.2 and Fo

= 0.1. Next, the result using Model 2 is shown. Next,
Fig. 4 shows 1*, P* and 12, P2 at the converged point
using Model 2. And we could get surface functions
which equal to those of exact functions.

When we analyze a practical data, models of 1 and
P are unknown indeed. One solution of this problem is
to use higher order power series as model functions, but
the use of large value of M and N requires many
measurement coils and yields a problem of
orthogonality between unknown p.uameters [4]. So it is
necessary to analyze using many types of model
functions, in case of analysis using real data. And using
the constraints which relates P, if exact model is not
chosen, we can obtain surface functions of a certain
degree of approx i mation.

5. The Effects of Measurement Errors
Adding random error to measured data, we

investigate these effects.

Figure 5 shows poloidal flux which are exact data,

measured data with 57o error and converged result.
Figure 6 shows exact functions 1*, P* and 12. P2 which
are converged ones. It was found that the maximum
difference between exact solution 1* and converged
result 1, was within the amount of artificial errors. But
the difference between P* and P2 often becomes much
larger. Therefore, to obtain confident function P, it is
necessary to use measured data which relate to pressure

at some points in plasma.
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the suitable model, it is necessary to analyze using many

forms of model functions.

From analysis of measured data with error, it is

found that function 1 is obtained accurately and P is

easily influenced by measured error.

In the future, we plan to analyze magnetic surface

functions of experimentally obtained data using many

types of function models.
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