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Abstract
Equations describing drift waves in a strongly inhomogeneous plasma with a sheared flow and a

sheared magnetic field are derived. New stabilization criteria are obtained in the linear regime. In the

nonlinear regime, it is found that the governing equations admit stationary solutions in the form of
tripolar vortex and vortex chains that are driven by the equilibrium plasma flow and magnetic shear. The
tripolar vortex obtained in this paper is surprisingly similar to corresponding structures in two-
dimensional flows in ordinary fluids.
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1. Introduction
Magnetic field shear has a strong stabilizing effect

on drift waves, especially for exponential density
profiles when they are completely stabilized. This
stabilization follows as a result of the convection of the

wave energy from the mode rational surface towards the

ion Landau damping layer. In realistic geometries,

inhomogeneities along the magnetic field lead to
toroidal coupling which may destabilize drift waves by a

complete elimination of the shear effects. Standard

approach to the problem of shear stabilization of drift
waves is to treat the diamagnetic drift velocity y* as a

constant, which is hardly satisfied in the edge of a

tokamak plasma. In configurations of this type, with a

steep density gradient and radially sheared transverse

velocity field, the magnetic shear stabilization criteria
are severely restricted, and the velocity profile curvature

vf,(,r) is found to play a crucial role. In this paper, we

first derive linear equations for drift waves in astrongly

inhomogeneous plasma with a sheared plasma flow and

a sheared magnetic field, keeping the terms which
describe the modification of the ion polarization drift
associated with the equilibrium flow velocity. New
stabilization criteria are obtained in the linear regime. In
the nonlinear regime, it is found that the corresponding
governing equations admit stationary solutions in the

form of a tripolar vortex and vortex chain.

2. Basic Equations and Derivations
We study low-frequency electrostatic perturbations,

d/0t << O1, of a collisionless, spatially nonuniform
plasma, no = no(x), with a sheared flow, rio =vo(x)6,- ,

p_laced in a sheared magnetic field of the form
Bo=i,Bo +aJBo(d/dx)/(.r), where l(d/dx)"f(x)l << l.
We take ions to be cold, and the electron temperature
gradient effects are neglected.

The nonlinear ion continuity and the parallel
motion equations describing the system [2] can be

written as
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[(l - p2V2)(O + BoQ)- Bo(p + Y)l+

Lv, ii,=e,

[6v,- Qif@))=0. Q)
Here, we have introduced the stream function rp of the

zero-order shear flow vs(;) = dEldx, and also v*e= dV
dx = - n6c?lnoQi.

In the linear limit, combining Eqs. (l)-(2), we

obtain: 
I

I"tl
14. potlo=14-ti+---l
ld*' I ld*' ' a+bx+cx'

tt

I n, ll
lo,*ur*+c,x2+ 

aoJ'(x)-lf t=0, (3)

| '+bx+cx'll

xVr(@*urr) Orl

ao=k2y# a=l-rr, U =-?
4r=-r, 

'zT+v.o+vo,

vo
c -- . t

Li

bt=-b, ,r=\-+
L; L:

Here we used the following normalization

o*-*, k, h')vo.kyH-r.,.
L r.r.*
p'

and, in order to simulate conditions typical for a H-
mode plasma [3,4], we modeled the unperturbed profiles

of the radial and diamagnetic velocities in the form

/ "\
un(x)=%lr* +.{1. and

I L' Lil\ -./

/ -' \%o(x)=Y.'|1-a;1. @)
\ L:-J

For the linear profile of the magnetic shear,/'(x) - xlLt,
we obtain

cr-c''' I ' \z

I

For / > 0, which is equivalent to LllL? > (kj + DVoIV-o
any nontrivial solution of Eq. (3) is an oscillatory

function along the x axis for.tr J @, with the distance

6(x) between its zeros going to 6o = tt/"'l t at large -r.
Thus, in this case we have an oscillatory, and possibly

stabilized solution along the x-axis, without any explicit

dependence on the magnetic shear. On the other hand,

when the above inequality is reversed, the solution is

unstable. Assuming that Vs = V.o, we obtain the

following condition for the oscillatory solution ft;r >
,E/(LT -i5. where obviously L3 > L? . According to

the experimental data L* = L, = I cmi consequently, for

a stabilized drift wave, we must have lL2l > I cm.

On the other hand, for a quadratic magnetic shear

determined by f'(x) = x2lL2s, we have the following limit
for F(.r):

.t\l (s)
L;I-l

An oscillatory, and thus stabilized solution for / > 0, is

obtained if

Lo, an V.o L', ,2i i+ *=>ki+l. (6)
Lorv] uo C t '

which for Vo = V*o = p ctlLn yields
I l-uz| / \4 1 |, ll L.\ a" L: Ik"'>ll . l-*+'-ll , and' l\Lsl Yn L'. 

Itl
| \4IL,\ ci L,l-l 

=+=>1. 
A)

\Lsl Vo' Li
However, for typical experimental values of the above

quantities [3,41, i.e., P = O.l cm, l,5 = 70 cm, and Ln =
L* = | cm, the shear term in Eq. (7) is much smaller
than the others, and the stability condition is practically

the same as for the linear magnetic shear.

In the nonlinear regime, we look for travelling
solutions of Eqs. (1), (2), which are stationary in the

reference frame moving with a constant velocity u
almost perpendicularly to the magnetic field lines and

the unperturbed gradients, i.e., 0l0t = -u0l3y.
Integrating Eq. (2) we obtain

6v, = Qlf(x)+ F(@ + BoE - uBox). (8)

Here, .f is an arbitrary function of the given argument,

which we adopt it in the linear form I = F ' (@ + tp -
a.r), where Fis an arbitrary constant. From the condition

of vanishing perturbations for x -+ 6, we have

5v, - F ' iD, and Atf@) =- FQ@)+ Fux. (9)

By using Eq. (9), we may integrate Eq. (1), yielding

[#.;u

* . * d,xY ,1@* r. r) o,]

(1)

, =4lgo-v(y-1')--l' = ,: 11- ,:,\ ti- t'.I '
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f Vl- tl @ + 9"(x) + Y(x) + f(x)
= g IA + e@)- uxl, (10)

where we have set p'Y' -+ Y2, Boe --> tp, Bsu -) u,
BsY - Y, and T.FB6 f / e -+ f. Here, Q(() is also an ar-
bitrary function of the given argument, and we take it in
the form 9G) = G6 + G1 . f. Such simple expressions
for the functions .7 and f are possible if the unperturbed
quantities cp(x), Y(x) and/(x) satisfy

QG)- ya = K1x2, e"(x)+ V(x)+ f(x)= Krx2, (11)

and, consequently, Eq. (10) can be rewritten in the form:

(V1- l) Qqrcrx2 =Go + G, ((D+rcrxz). (12)

Equation (12) will be solved separately inside and

outside of a circle with an arbitrary radius 16, allowing
for different values of Gfl"f and G[n1 outside and inside
of the vortex core, on condition of localized solutions
for r --r -. In the cylindrical co-ordinates r,O,Eq. (12)
separates variables, and its solution can be written in the

form

@ou' (t, 0) = BoKo(lt) + BrKrQ"rr) cos20,

(13)

-h)"-',,,] ry*,,,

,.(**,.fr,t",)

=^[(f -h)",.',fr*,]-

l,t
^[;

L'z, + Ii r<,rt 
Kl^11 2"

B,(,,*;*{ r; *.j=
\n;l

t<,-A rA
dt=-- j 

,-J22 (15)

(16)
t2

B =doJn- loK^-A+,"2
K,. J,"K,rni =(K, -A) r": +2A."K2 " J2

A,=-L Ktri 
.K22

| -rl
laotr(12)- Ailcos2e. (14)
| 'l

Here, Gfiot = 0, Giut = KzlKr and Ke.2, Js.2arc modified
Bessel, and Bessel functions of the given order,
respectively, and

11=t +ci"'=l +*, 73=-l _ c'i.
K,+K'A-rr+-+,

L;

, (": 
",*",\B=_i:l--+Kr+ - l.1412 ^; I"\ ' l

We use the following physically justified continuity
conditions at r = ro, which allows for determining the

unknown constants in Eqs. (13) and (14): continuity of
the potential @, yielding finiteness of the electric field at

r - 16, continuity of (dldr)<D, yielding the absence of
surface charges at r = ro, continuity of the function f({)
to avoid singularities of the starting equation. The argu-

ment of the function 0G) rs constant on the separatrix r
- re. The above continuity conditions yield:

(r7)

As an illustration, we take 11 = l, Kz = I and ro= 2, and

solve the nonlinear dispersion equation (17) numerically
in the vicinity of the first zero of the Bessel function "/2,
giving L2 = 2.68. This yields the following values for
the above constants: fo = -53.85, Fz = -25.87, ao =
5.75, ar= -7.46, A = 1.28, and B = -0.6. A typical
profile of the tripolar vortex, given by Eqs. (13), (14),

corresponding to these numerical values, is presented in
Figs l. and 2.

Equation (10) admits also several types of vortex
chain solutions. Here we shall present only one. For the

shear flow in the form of an asymmetric function around

the velocity a, given by v6("r) = u * AoKtanh(rx), and in
the case Y(x) + f(x) - 0, taking the function Q in the
form: 

I

9 @ + e - ux)= AoK2 exp l- ? r* + e - ux)|,

l^o l
Eq. (10) can be rewritten in the following way:

r)ts,

<Din 1r, 0S- aoJoQrr)- ll - B+
2

(vl- t y @ - /(x) ("-'- r) =0, (18)

where /(x) = 8K2l(e2*' * ,-2rx + 2). An equation of the

type of Eq. (18) has been derived and solved earlier in
our paper [5], where we studied the problem of self-gen-

eration of the magnetic field in a plasma with a shear

flow, thus for a completely different physical problem
with different spatial and time scales. Following the

same procedure we may write @(r, y) = @r(r) + d@(*)
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xFig. 1 Contour plots of the tripolar vortex describing the

potential O(r, 0l for r, = 1, r, -- 1, ro = 2, Bo =

-53.85, gz = -25.87 , do = 5.75, dz = -7 .46, A = 1.28,
B = -0.6.

*
Fig. 2 Three dimensional view of the potential from Fig.

1.

cos(t"y), where l6@(x)l << l@'(x)1, and we find two
types of localized solutions, in the form of single and

double vortex chains presented in Fig. 3, which are

structures localized in the x-direction, and periodic in y-

direction.

3. Summary and Conclusions
We have studied the behavior of linear and

nonlinear drift waves in strongly inhomogeneous

systems with sheared plasma flows. By a careful
inclusion of the shear flow effects in corresponding

equations describing drift waves in such plasma

systems, the stabilization criteria are substantially
changed. For the given density profile and sheared

plasma flows, the linear magnetic field shear has no

effects on the behavior of drift waves; it is the sheared

flow whose influence is essential, while the role of the

magnetic shear is much smaller. It enters into the

stability conditions provided that its profile can be

approximated by a quadratic function. Yet, for typical
parameters in the H-mode of a tokamak plasma, the

influence of the magnetic shear on the stability of drift
waves is insignificant. In the strongly nonlinear regime,

>r0

Fig. 3 The sketch of the single (a) and double (b) vortex
chain solution.

we have solved the appropriate equations using the

standard vortex scenario, and the formation of a tripolar
vortex and vortex chain is presented. The tripolar vortex

structure consists of the monopolar, and quadrupolar

part (resulting from the x2 terms by which the

unperturbed state is modeled). For some specific profiles

of the functions E(x), ty(x), and /(;) describing the

unperturbed state, the vortex chain solutions can also be

found [2]. Finally, it should be emphasized that the

nonlinear solutions presented here are analogous to the

well-known structures in ordinary fluids, and we believe

that they may arise as the final stage in the development

of instability of drift waves in both laboratory, and space

plasma configurations of this type.

References

lll c.J.F. van Heijst et al., L Fluid Mech. 225, 3Ol
(199r).

[2] J. Vranje5, Phys. Scripta 59,23O (1999).

t3l K. lda et al., Phys. Rev. Lett. 65, 1364 (1990).

[4] S. Sen e/ a/., Nucl. Fusion 34,87 (1994).

[5] J. VranjeS and D. Jovanovi6, Phys. Plasmas 3,2275
(1996).

(b)

0
X

t24




