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Abstract
A hierarchy of models, i,e., (l) a model with many degrees of freedom, (2) a model with

intermediate degrees of freedom, (3) a model with a few degrees of freedom is considered to understand
the nature of turbulence. Results obtained from models of different levels are compared and
characteristics of the interchange mode turbulence such as chaotic nature, cascade and statistical
expression are discussed.
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1. Introduction
Much work has been done in the research of

inhomogeneous plasma turbulence and associated
transport. Recent research shows, however, nonlinear
instabilities play an important role in the transport
driven by the inhomogeneous plasma turbulence rather
than linear instabilities []. The analysis of subcritical
turbulence brings us a new insight for plasma
turbulence. As a typical example of the inhomogeneous

plasma turbulence, the interchange mode turbulence in a
system with the inhomogeneities of pressure and

magnetic field is considered. Based on the direct
simulation of the reduced MHD equations [2], it is
shown that (l) the nonlinear plasma turbulence develops

even in a linearly-stable region, (2) the threshold value
of the fluctuation amplitude for the nonlinear instability
is much lower than the stationary level (3) the strong
turbulent state is self-sustained and the fluctuation
amplitude is proportional to the power of the pressure

gradient. These results indicate that the strong
turbulence is sustained by the inhomogeneities and the

conventional method which is based on elaborate
evaluation ofthe linear srowth rate is insufficient.
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The nonlinear destabilization mechanism discussed

here originates from the anomalous electron viscosity
due to the energy cascades to short wavelength modes.

This mechanism also leads to the instability of the

trajectory in phase space. Positive Lyapunov exponents

and short correlation time are observed in this system. It
is a challenging problem to understand the relation
between the correlation time and the irreversibility due

to global transport. In the study of turbulence, a system

with high Reynolds number is important. However, it is
difficult to solve the equations in the inviscid limit even

by a super-computer. In order to understand the issues

above we consider a hierarchy of the models, i.e., (l) a

model with many degrees of freedom like direct
simulation t3l, (2) a model with intermediate degrees of
freedom such as a shell model t41, (3) a model with a

few degrees of freedom such as the Lorenz model [5].
Results obtained from models of different levels are

compared and characteristics of the interchange mode

turbulence such as chaotic nature, cascade and
intermittency are discussed.
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2. Model with Many Degrees of Freedom
We here adopt the three field reduced set of

equations in a shear magnetic field with bad averaged

curvature. This model is relevant to study the nonlinear

dynamics and associated transport by the electrostatic

current diffusive interchange mode turbulence in a

system of magnetic hill. The equation of motion, Ohm's

law and the energy balance equation are given in a

normalized form as

amplitude is 3 times higher than that of the case without

electron nonlinearity in Eq. (2). An instantaneous

maximum Lyapunov exponent is evaluated from the

relation 6E n e2L', where ,1 represents the instantaneous

maximum Lyapunov exponent and 6E is given by

* ol* =iky sxj - jak, p + P,v|,Q,

I i =-lft, sxQ + )",Y! i,

{, o =- ik, Q +x,Y2Lp,

(1)

Q)

(3)

where d/dt = )ldt + t0, l , [, ] is the Poisson bracket

denoting the E x B nonlinearity. For the normalization,

the poloidal Alfven time and the electron skin depth are

employed (see Ref. [2] for details). Figure I shows the

temporal evolution of the growth of fluctuating pressure

energy (nearly equal to total energy), which
demonstrates the nonlinear growth of fluctuations. We

choose the parameters l!" = X" = O.2, L, = 0.01 and s =
a = 0.5. The solid line is the result of the solution of
Eqs. (1)-(3) and the electron nonlinearity in Eq. (2) is
kept. (Dashed line: the case without the nonlinearity in
Eq. (2).) In the small amplitude limit, the perturbations

grow following the linear growth rate. However, at the

time of t = 10, when the amplitude exceeds a certain

threshold value, the growth rate starts to increase. In the

time range of l0 < t < 60, the growth rate becomes

larger as the amplitude increases. This shows the

nonlinear destabilization originated from the electron

dynamics. During this phase, the normal cascade to
higher ft, mode develops. It is found that the saturation
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and

9Uo * lSQ.pl+td,6pl=ik, sx6@ +)(,Y216p.
dt

Figure 2 shows the time evolution of 1. For comparison,

total energy defined by

u" = !, l'',',*; ? (l v, 6@ l' *l o; l'. | 
5o l')

E,= 
!, f ,.',*; ? (l v, Ql'+ | "r l' + | o l'),
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is also plotted. In the calculation, we renormalize the

amplitudes 60, 6/, 6p at each time step of A/ = 30. It is
observed that at t < 200, the behavior of the
instantaneous maximum Lyapunov exponent is similar
to the fluctuation amplitude Q, j, p. However, at t > 200,

the behavior is different from that of the total energy.

The value of the maximum Lyapunov exponent is

obtained as order unity. This system describes the

submarginal turbulence sustained by the nonlinear
instability which is associated with the strong normal

cascade and the positive maximum exponent.

12

8
L

4

0

1s0 200 250 3fi)
t

Fig.2 Time evolution of the instantaneous maximum
Lyapunov exponent.

100

Fig. 1 Fluctuating pressure energy versus time.
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3. Model with Intermediate Degrees with
Freedom

We extend a shell model by including the thermal
instability terms (Rayleigh B6nard convection) [6].
Normalized shell model is expressed in Fourier space as

du,: = i(o nui*t ui*z + b^u) , ui*, + c nui ,ui_r)

system and the maximum Lyapunov exponent is
obtained as 2290. Figure 4 shows the scaling exponent
(, for the structure function versus order p. The
structure functions are calculated by S!(n) = (lu,ln) and

S!(n) = {e"lr), where the bracket represents the time
average in the intervals with t = 0.2 - 10. The scaling
exponents are defined by (lu,lo) * k;l', and (lg,lo) *
k;l?. fne circle and the triangle correspond to (i and
(!, respectively. For comparison, the result obtained by
GOY model [8] is also plotted (denoted by the square).

The dashed line corresponds to K41 l9l: 6o = p/3.
Intermittency in shell models is the subject of much
current work and is quite poorly understood at the mo-
ment. The scaling exponent for the structure function of
fluctuating velocity field agrees with the result of GOY
model, and is larger than that of fluctuating temperature

field. They are not affected by the linear instability so

much, but reflect the characteristics of nonlinearity. This
system describes the strong turbulence with high
Rayleigh number, which contains the sufficient numbers

of positive Lyapunov exponents, intermittency nature

and the normal cascade [9].

4. Model with a Few Degrees of Freedom
We extend Lorenz model by introducing higher

Fourier harmonics which describe the shear flow effect.

Normalized five components model [0] is written as

ff =vw + P,(Y- X ). V*=-xz +rX-Y'

V =xY - bZ, # =- xw - yvv,

# =- cxV - fy,,W

+P,en-P,(u,

de"

? =,t e, (ui-.0)., - ui.,0)-,1

+ g 
^(ui,-20)-t+u)-,0i t)

+ h, (ui*, 0),, + u),rqi*r)
+Rour-k2r0n (5)

where * represents the complex conjugate, n = l, ..., N,

number ofeach shell, u,, the fluctuating velocity, gn, the

fluctuating temperature, kn= C2n- I, the wave number,

P,, the Prandtl number, Ro, the Rayleigh number. For

the boundary conditions, we assume uo= trN* r = 0 and

0o= 0N, r = 0 and the coefficients are given by

k,-t kn-z
an=kn, U,=-t, r^=-;.

k, knt - k.-,,^=;. t,=-;. h,=-;.

and bt = bx = ct = c2= aN-r = aN = €t = €N = Et = 82=
hN-r = hx= O. Here the typical scale length and the

thermal diffusion time are used for normalization [7].
We use the following parameters: kt = C - l0-2, P, = l,
Ro = 704, N = 20 for calculations. Figure 3 shows the

distribution of instantaneous Lyapunov exponents at t =
l. It is found that first 12 Lyapunov exponents are

positive for the system with mode numbers N = 20,
where total Lyapunov exponents are given by 80 in this

(4)
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Fig.3 Distribution of instantaneous Lyapunov
exponents.
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with

Q2r= ---: -R",
lrc" + q. I\-,/

Tv=-:!f . P,,
TE'+ q"

and

, 4n2o =---^------7 tn'+ q"

4n2 + a2
Yw= - +- Pr

n'+ q"

^)Jq-
C= u,

414n'z+ q'z)

where 4 indicates (normalized) wave number of cell-
arrangement. The Lorenz model is reproduced if we set

V = W = 0. In simulations, the normalized Rayleigh
number is chosen to be an order parameter to
characterize the system behavior and the other
parameters are fixed as q - Ic, b = 20, Tv = 10.0, c =
0.15 and P,= 4.O. Figure 5 shows Lyapunov exponents

versus norrnalized Rayleigh number. It is found that for
the parameter regime of r < 140, the similar behavior of
the Lyapunov exponent is observed to that of Lorenz

model. We observe the chaotic behavior and the limit
cycle solution as well as the period-doubling process of
thesolution in the regime of 306 < r < 2200. For the

regime of r > 2200 this model also falls into the limit
cycle. This fact indicates that a few numbers of Fourier

modes are not enough to describe the chaos in the

regime with high Rayleigh number. However, this
model is useful to study the transition to chaos from
laminar state.

5. Summary and Discussions
To study the interchange mode turbulence in the

various range of Rayleigh number, we introduce
hierarchical model equations: (I) a model with many

degrees with freedom, (II) a model with intermediate

degrees of freedom, (III) a model with a few degrees of
freedom. It is found that the nonlinear growth of
instability is characterized by normal cascade and

positive Lyapunov exponent. Intermittent nature is
discussed by the higher order structure functions of a

shell model. Intermittency is considered to be related

with the normal cascade [9]. At this point, the relation
between the submarginal instability and intermittency is

not clear. It is left for a future work. The transition to
chaos is discussed based on the extended Lorenz model,

Various dynamical behaviors which are not described by

the Lorenz model are observed in the range of 306 < r <
2200, however, for r > 22OO, this model is not relevant

to describe chaos. The absolute value of saturation
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Fig. 5 Lyapunov exponents versus normalized Rayleigh
number.

amplitude of energy or flux is predicted only by model
(I), however, universal scaling law such as Kolmogorov
inertia scaling law is also described by model (II).
Model (II) has an advantage to investigate multi-fractal
nature of turbulence, i.e., intermittency and transition
from chaos to turbulence. Inter-relation between a model

with a few degrees of freedom and that with
intermediate or many degrees of freedom should be

investigated for future.
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